

Lecture Notes in Computer Science 3458
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Pilar Herrero María S. Pérez
Víctor Robles (Eds.)

ScientificApplications
of Grid Computing

First International Workshop, SAG 2004
Beijing, China, September 20-24, 2004
Revised Selected and Invited Papers

13

Volume Editors

Pilar Herrero
María S. Pérez
Víctor Robles
Universidad Politécnica de Madrid
Facultad de Informática
Campus de Montegancedo S/N
28.660 Boadilla del Monte, Madrid, Spain
E-mail: {pherrero,mperez,vrobles}@fi.upm.es

Library of Congress Control Number: 2005925775

CR Subject Classification (1998): C.2, D.2.12, D.4.3-4, D.4.7, H.3, H.4, H.5.3

ISSN 0302-9743
ISBN-10 3-540-25810-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-25810-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11423287 06/3142 5 4 3 2 1 0

Preface

We wish to extend a warm welcome to the reader of this extended postpro-
ceedings publication of SAG 2004, the 1st International Workshop on Scientific
Applications on Grid Computing. This workshop was held in September 2004,
in conjunction with the 2004 IEEE/WIC/ACM International Joint Conference
on Web Intelligence (WI 2004) and Intelligent Agent Technology (IAT 2004).

The WI and IAT conferences have provided, for several years, a leading in-
ternational forum to bring together researchers and practitioners from diverse
fields, such as computer science, information technology, business, education, hu-
man factors, systems engineering, and robotics, to explore the fundamental roles
as well as practical impacts of artificial intelligence (AI) (e.g., knowledge rep-
resentation, planning, knowledge discovery, and data mining, intelligent agents
and social network intelligence) and advanced information technology (IT) (e.g.,
wireless networks, ubiquitous devices, social networks, the Wisdom Web, and
data/knowledge grids), and to examine the design principles and performance
characteristics of various approaches in intelligent agent technology.

In the last decade, Grid computing has become one of the most important
topics to appear and one of the most widely developed fields. Research into Grid
computing is making rapid progress, owing to the increasing necessity of compu-
tation resources in the resolution of complex applications. The great challenge
is the complete integration of heterogeneous computing systems and data re-
sources with the aim of providing a global computing space. The achievement of
this goal will involve revolutionary changes in the field of computation, enabling
seamless resource and data sharing across networks. SAG 2004 aimed to provide
a forum for novel topics related to Grid computing, providing an opportunity
for researchers to discuss and identify key aspects of this important area.

The set of technical papers presented in this volume comprises the SAG 2004
selected papers plus a further 8 invited papers. As for the invited papers, we
can say that this extended postproceedings publication gave us the opportunity
and the pleasure to introduce the work being carried out by some people who
are very well known in the Grid community; and for the SAG 2004 selected
papers, we can say that this selection was the result of a difficult and thorough
review process. The SAG 2004 workshop received 29 submissions of high quality
from which the 10 papers making up the technical program were selected. The
number of submissions and the quality and diversity of the resulting program
are testimony to the interest in this up-and-coming area.

This publication could not have taken place without considerable enthusiasm,
support and encouragement as well as sheer hard work. Many people have earned
the thanks of those who attended and organized SAG 2004. In particular, we
would like to thank:

VI Preface

• The many supporters of WI and IAT 2004 for their contributions to the
conference. Many of these people have been involved with the WI and IAT
2004 conferences for several years.

• The members of the workshop Program Committee who gave their time
and energy to ensure that the conference maintained its high technical
quality and ran smoothly. The many individuals we owe our thanks to are
listed in this volume.

• All the invited authors for their great effort, hard work and support:
Konstantinos Karasavvas, Mario Antonioletti, Malcolm Atkinson, Neil
Chue Hong, Tom Sugden, Alastair Hume, Mike Jackson, Amrey Krause,
Charaka Palansuriya, M. Nedim Alpdemir, Arijit Mukherjee, Anastasios
Gounaris, Norman W. Paton, Alvaro A.A. Fernandes, Rizos Sakellariou,
Paul Watson, Peter Li, Ilkay Altintas, Adam Birnbaum, Kim Baldridge,
Wibke Sudholt, Mark Miller, Celine Amoreira, Yohan Potier, Bertram
Ludaescher, Georgousopoulos Cristos, Omer F. Rana, M. Cannataro,
M. Comin, C. Ferrari, C. Guerra, A. Guzzo, and P. Veltri, Jose M. Perez,
Felix Garcia, Jesus Carretero, Jose D. Garcia, Soledad Escolar, J. Herrera,
E. Huedo, R.S. Montero, I.M. Llorente, and Jemal H. Abawajy.

• All those who submitted to the workshop. The standard set was higher than
our expectations and reflected well on the research work in the community.

We would also like to acknowledge the organizers of the WI and IAT 2004
conferences, as well as Alfred Hofmann, from Springer, for the support and
encouragement they extended to this publication. This volume is the result of a
close cooperation and hopefully will allow us to contribute to the growth of this
research community.

Pilar Herrero, Maŕıa S. Pérez, Vı́ctor Robles

1st International Workshop On Scientific
Applications on Grid Computing (SAG 2004)

Program Committee

Steering Committee Co-chairs

Pilar Herrero, Universidad Politécnica de Madrid, Spain
Maŕıa S. Pérez, Universidad Politécnica de Madrid, Spain

General Co-chairs

Vı́ctor Robles, Universidad Politécnica de Madrid, Spain
Milena Radenkovic, University of Nottingham, UK

Program Committee

Abawajy, Jemal, Faculty of Science and Technology, Deakin University,
Victoria, Australia

Antic, Dragan, University of Electronic Engineering, Nis, Serbia and
Montenegro

Baker, Mark, University of Portsmouth, UK
Benford, Steve, University of Nottingham, UK
Bosque, José Luis, URJC, Madrid, Spain
Buyya, Rajkumar, University of Melbourne, Australia
Carretero, Jesús, UC3M, Madrid, Spain
Corsaro, Angelo, Washington University in St. Louis, USA
Cortes, Toni, UPC, Barcelona, Spain
Del Peso, José, UAM, Madrid, Spain
Dongarra, Jack, University of Tennessee, Knoxville, USA
Dopico, Antonio G., UPM, Madrid, Spain
Garćıa, Félix, UC3M, Madrid, Spain
Greenhalgh, Chris, University of Nottingham, UK
Humble, Jan, University of Nottingham, UK
Lord, Phil, University of Manchester, UK
Mart́ın, Ignacio, INTA, Madrid, Spain
Mart́ın, Vicente, UPM, Madrid, Spain
Menasalvas, Ernestina, UPM, Madrid, Spain
Miles, Simon, University of Southampton, UK
Omicini, Andrea, Università di Bologna, Bologna, Italy

VIII Organization

Peña, José Maŕıa, UPM, Madrid, Spain
Rana, Omer, Cardiff University, UK
Rosales, Francisco, UPM, Madrid, Spain
Sánchez, Alberto, UPM, Madrid, Spain
Segovia, Javier, UPM, Madrid, Spain
Stockinger, Heinz, CERN, Geneva, Switzerland
Tari, Zahir, RMIT University, Melbourne, Australia
Zhong, Ning, Maebashi Institute of Technology, Maebashi, Japan

Table of Contents

Data-Based Applications

Introduction to OGSA-DAI Services
Konstantinos Karasavvas, Mario Antonioletti,
Malcolm Atkinson, Neil Chue Hong, Tom Sugden,
Alastair Hume, Mike Jackson, Amrey Krause,
Charaka Palansuriya . 1

Using OGSA-DQP to Support Scientific Applications for the Grid
M. Nedim Alpdemir, Arijit Mukherjee, Anastasios Gounaris,
Norman W. Paton, Alvaro A.A. Fernandes, Rizos Sakellariou,
Paul Watson, Peter Li . 13

Mobile Agent-Based Service Provision in Distributed Data Archives
Christos Georgousopoulos, Omer F. Rana . 25

A Proxy Service for the xrootd Data Server
Andrew Hanushevsky, Heinz Stockinger . 38

A Flexible Two-Level I/O Architecture for Grids
Alberto Sánchez, Maŕıa S. Pérez, Vı́ctor Robles, José M. Peña,
Pilar Herrero . 50

Data Driven Infrastructure and Policy Selection to Enhance Scientific
Applications in Grid

Jose M. Perez, Felix Garcia, Jesus Carretero, Jose D. Garcia,
Soledad Escolar . 59

BioApplications

Modelling a Protein Structure Comparison Application on the Grid
Using PROTEUS

Mario Cannataro, Matteo Comin, Carlo Ferrari, Concettina Guerra,
Antonella Guzzo, Pierangelo Veltri . 75

Grid Services Complemented by Domain Ontology Supporting
Biomedical Community

Maja Hadzic, Elizabeth Chang . 86

X Table of Contents

Applications Architecture, Frameworks and Models

A Generic Architecture for Sensor Data Integration with the Grid
Jan Humble, Chris Greenhalgh, Alastair Hamsphire,
Henk L. Muller, Stefan Rennick Egglestone . 99

Embarrassingly Distributed and Master-Worker Paradigms on the Grid
J. Herrera, E. Huedo, R.S. Montero, I.M. Llorente 108

A Framework for the Design and Reuse of Grid Workflows
Ilkay Altintas, Adam Birnbaum, Kim K. Baldridge,
Wibke Sudholt, Mark Miller, Celine Amoreira, Yohann Potier,
Bertram Ludaescher . 120

Towards Peer-to-Peer Access Grid
Milena Radenkovic, Igor Miladinovic . 134

A Service Oriented Architecture for Integration of Fault Diagnostics
Xiaoxu Ren, Max Ong, Geoffrey Allan, Visakan Kadirkamanathan,
Haydn Thompson, Peter Fleming . 146

GAM: A Grid Awareness Model for Grid Environments
Pilar Herrero, Maŕıa S. Pérez, Vı́ctor Robles . 158

Accounting and Market-Based Architecture

Grid Accounting Service Infrastructure for Service-Oriented Grid
Computing Systems

Jemal H. Abawajy . 168

Mercatus: A Toolkit for the Simulation of Market-Based Resource
Allocation Protocols in Grids

Daniel Grosu, Umesh Kant . 176

Resource and Information Management in Grid

A Resource Monitoring and Management Middleware Infrastructure for
Semantic Resource Grid

Fawad Nazir, Hafiz Farooq Ahmad, Hamid Abbas Burki,
Tallat Hussain Tarar, Arshad Ali, Hiroki Suguri 188

A Service-Oriented Framework for Traffic Information Grid
Guozhen Tan, Chengxu Li, Jiankun Wu . 197

Author Index . 207

Introduction to OGSA-DAI Services

Konstantinos Karasavvas1, Mario Antonioletti2, Malcolm Atkinson1,
Neil Chue Hong2, Tom Sugden2, Alastair Hume2, Mike Jackson2,

Amrey Krause2, and Charaka Palansuriya2

1 National e-Science Centre, University of Edinburgh, Edinburgh EH8 9AA, UK
{kostas, mpa}@nesc.ac.uk

2 EPCC, University of Edinburgh, JCMB, The King’s Buildings,
Mayfield Road, Edinburgh EH9 3JZ, UK

{mario, neilc, tom, ally, michaelj, amrey, charaka}@epcc.ed.ac.uk

Abstract. In today’s large collaborative environments, potentially com-
posed of multiple distinct organisations, uniform controlled access to data
has become a key requirement if these organisations are to work together
as Virtual Organisations. We refer to such an integrated set of data re-
sources1 as a virtual data warehouse. The Open Grid Services Architec-
ture - Data Access and Integration (OGSA-DAI) project was established
to produce a common middleware solution, aligned with the Global Grid
Forum’s (GGF) OGSA vision [OGSA] to allow uniform access to data
resources using a service based architecture. In this paper the service
infrastructure provided by OGSA-DAI is presented providing a snapshot
of its current state, in an evolutionary process, which is attempting to
build infrastructure to allow easy integration and access to distributed
data using grids or web services. More information about OGSA-DAI is
available from the project web site: www.ogsadai.org.

Keywords: Data, Databases, Grid, DAIS, OGSA-DAI, Open Grid Ser-
vices Architecture, Web Services.

1 Introduction

Access to and the sharing of data across organisational boundaries is an impor-
tant requirement for a large number of UK national and international collabo-
rative projects. Instead of requiring each of these projects to individually solve
the same data access problem, the OGSA-DAI project was established to pro-
duce a common middleware solution that allows uniform access to data resources
using a service-based architecture. The initial objectives of the project have con-
centrated on developing the base data access platform and now, gradually, to

1 A data resource here is taken to mean any entity that can act as a source and/or sink
of data together with its associated management framework. Although the frame-
work being developed at the moment works mainly with databases the scope is more
general and could encompass file systems and streams.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 K. Karasavvas et al.

focus on more sophisticated functionality that offers data integration capabili-
ties, such as distributed query processing provided by the OGSA-DQP project
[OGSA-DQP] using OGSA-DAI services. Up to the advent of OGSA-DAI, pro-
vision for uniform data access through service-based interfaces was absent from
the then available Grid toolkits, such as the Globus Toolkit 3.02 (GT3) and
Unicore.

In moving towards these ends the development of OGSA-DAI has been guided
by a set of key design principles, mainly:

– Avoid unnecessary communication between a service and its clients. In order
to minimise the number of message exchanges between a service and its
clients, multiple interactions are abstracted into a set of activities which are
then contained in a single document, referred to as a perform document3

requiring a single message exchange.
– Avoid unnecessary data movement. Wherever possible move the computation

to the data. Capabilities already available to a data resource, together with
additional capabilities implemented at the service layer such as data trans-
formations or third party data delivery, are exposed through the activities
which can be linked as a series of pipelined tasks through which data flows,
all within the same perform document. These activities are then executed
within the scope of a single service interaction near or at the data source.

– Provide an extensible activity framework. It is unlikely that OGSA-DAI will
provide all the base functionality, implemented as activities, that a given
project might require. Thus, from the outset, perform documents and the
activity engine have been designed to be extensible. New functionality can
be implemented as activities and incorporated to work within the existing
framework.

– OGSA-DAI does not provide a complete virtualisation of the underlying data
resource. It is still necessary to know what the underlying data resource is
and target suitable queries for that type of data resource. The infrastructure
does not automatically do this; OGSA-DAI is not attempting to create a
new universal query language suitable for all types of data resource.

– Provide an extensible architecture. Allow the OGSA-DAI framework to be
customised or extended, e.g to add a stronger security model.

– Build the middleware using existing standards and, where these do not exist,
try to produce standards to fill in the gaps. Up to release 5, the OGSA-DAI
middleware has been based on the GGF Open Grid Services Infrastructure
recommendation [OGSI] and its dependencies. At the time there were no

2 From GT3.2 OGSA-DAI became a contributed component to the Globus Toolkit;
an endorsement that such functionality was required. It is also still distributed in-
dependently of Globus through the OGSA-DAI project web site, from which there
have been over 3300 downloads by approximately a 1000 registered users.

3 An additional advantage of using a document based interface is that only one opera-
tion is required at the interface, perform. Functionality can easily be added without
requiring a change to the interface, as this can be done inside the document.

Introduction to OGSA-DAI Services 3

standards for service-based interfaces to access data in databases so a GGF
Working Group (WG) was established. The Database Access and Integra-
tion (DAIS) WG, since GGF 5, has been attempting to standardise this in
a manner consistent with the OGSA vision. The OGSA-DAI team has been
providing a strong lead in this process and aim to produce one of the two
interoperable implementations required by GGF for proposed recommenda-
tions to become a full GGF recommendation. DAIS and OGSA-DAI are not
currently aligned due to the initial rapid movement of the proposed DAIS
specifications.

– Establish a standard, efficient way of moving data between services. This
has become a key concern within OGSA-DAI now that the focus is moving
towards data integration where more complex service-to-service interactions
are required. No generic solution exists as yet, although the project has
developed a Grid Data Transport portType4 to achieve this. The scope of
service-to-service data transport is much wider than just within OGSA-DAI
and may require further standardisation effort within GGF.

Using the above principles, together with other guiding criteria, five major re-
leases of OGSA-DAI have been produced at fairly regular intervals since early
2003. Each of these releases has increased the functionality, performance, and
robustness of the product, as well as keeping abreast of other supporting middle-
ware. The current release, release 5, is based on the GGF 7 version of the DAIS
specification [DAIS-GGF7] and the GGF-defined OGSI recommendation. How-
ever, within this time frame OGSI has been deprecated and the DAIS specifica-
tions have radically changed. Discussion of the implications of this is postponed
to section 4. The current release of OGSA-DAI uses the Globus Toolkit 3.2 OGSI
implementation (GT3 Core)5. A version with a subset of the release 5 function-
ality that runs over WS-I+ [WS-I+], implemented as the OMII platform6, is
also available. The next few sections of this paper describe the components and
operation of OGSA-DAI as found in release 5.

2 Architecture

OGSA-DAI has thus far relied on three types of services to provide its function-
ality: to publish and discover information about services and data resources; to
provide persistent Grid proxies for data resources and a service to access and
manipulate data resources. The current base OGSA-DAI services are thus:

– Data Access and Integration Service Group Registry (DAISGR) – a
service allowing other services to publish metadata about any data resources
they represent and the capabilities they expose. A client can thus use a

4 A term used within WSDL [WSDL] to collect a set of operations.
5 Only a modest subset of the facilities of GT3.2 are required for OGSA-DAI and a

large number of projects run successfully on this platform.
6 http://www.omii.ac.uk

4 K. Karasavvas et al.

DAISGR to identify, by querying its registered metadata, a resource provider
that best satisfies its needs.

– Grid Data Service Factory (GDSF) – acts as a persistent access point
to a data resource and contains additional related metadata that may not
be available at a DAISGR. A GDSF creates GDSs to access and manipulate
data resources.

– Grid Data Service (GDS) – acts as a transient access point to a data
resource. It is through a GDS that a client interacts with a data resource.

The GDS and GDSF services were specified in the GGF 7 DAIS draft recom-
mendation. The DAISGR is not specified by DAIS but is based on interfaces
specified in OGSI. A typical OGSA-DAI usage pattern is presented in figure 1
below.

Fig. 1. Typical OGSA-DAI interaction

In figure 1 one or more persistent DAISGRs are instantiated at container start-
up. Any service implementing one or more of the OGSA-DAI portTypes can reg-
ister with a DAISGR. There is no requirement for the DAISGR to be co-located
in the same container as the services that register with it. Services registering
with a DAISGR may register their capabilities, as well as metadata about the
data resource’s information content.

GDSFs act as a point of presence for one particular data resource on a
Grid. The current distribution of OGSA-DAI provides support for a number
of different types of data resources amongst which are the relational databases:
MySQL, DB2, Oracle, PostgreSQL, SQLServer, Derby (formerly Cloudscape);
the XML databases: Xindice (eXist has been shown to work but is not currently
supported); as well as some initial support for accessing the content of semi-
structured files and file collections. Other types of data resources currently not
directly supported by OGSA-DAI have also been employed, such as IBM content

Introduction to OGSA-DAI Services 5

manager in the e-Diamond project [eDiamond], and data streams [Data-Streams].
GDSFs are also persistent services configured at container start-up. More than
one GDSF can be used to represent the same data resource if necessary but a
GDSF can only expose one data resource. Currently GDSFs cannot be dynami-
cally created or configured. On creation, a GDSF may register its service handle
with a DAISGR, along with sufficient metadata and capability information to
allow service/resource discovery to take place, see (1) in figure 1. Clients can
obtain information about available resources (represented by GDSFs) by query-
ing a DAISGR as in (2). They can then ask for detailed information, e.g. the
schema of the resource, at a particular GDSF of interest – step (3). A GDSF, in
effect, acts as a persistent Grid-enabled wrapper for a data resource but does not
provide direct access to that data resource. Access to a data resource requires
the creation of a GDS through the GDSF’s Factory portType as specified in
OGSI – step (4).

GDSs are transient services created at the request of clients who wish to
access a data resource. Data resource access is done through the previously
mentioned single document-based operation provided by the GDS. A client sub-
mits a perform document to the GDS – step (5) – which contains the sequence
of activities to be executed on that data resource or the resulting data – step
(6). The activities that can be executed by the GDS are defined when a GDSF
is configured. The inner workings of a GDS are examined in more detail in the
next section.

2.1 GDS Low-Level Interactions

The internals of a GDS are schematically shown in figure 2. The activity en-
gine is the core component of a GDS. It is responsible for processing requests
and generating responses. A request takes the form of a perform document –
see section 2.3 for an example, which is an XML document containing one or
more activities. An activity dictates the action that the activity engine must

Fig. 2. GDS perform document processing and interactions

6 K. Karasavvas et al.

perform. Activities can be chained together so that the output of one activity
becomes the input of another – thus activities read data, process it and write
blocks of data to the next activity in the chain. The data blocks are implemented
as Java objects which allows efficient streaming between activities and reduces
any potential memory overhead. Interfaces are provided for reading and writ-
ing between activities – by implementing these interfaces new activities can be
added that extend the functionality of OGSA-DAI and work within the same
framework.

Figure 2 depicts three activities chained together: the first queries the
database, then the results from the query are transformed before being delivered
to a third party. In this instance the delivery of data is controlled by the delivery
activity. The response document is returned to the client that sent the initial
perform document. It contains a result element for each activity contained in the
original perform document with its end status. If no delivery activity is explicitly
specified in the perform document then the results are included in the response
document. Thus in this example three interactions with the service have been
reduced to one interaction through the use of the perform document without the
client needing to move or organise temporary storage for intermediate results.
In addition, the processing of the data has been done close to the data source
avoiding any unnecessary data movement.

The data resource mediator provides an abstraction layer that governs access
to that data resource. It manages the opening and closing of connections. The
credentials that a client uses to access the service are mapped to a username and
password, via the role mapper, which are used to authorise a connection to the
data resource. The connection is then returned to the activity to perform the
required query or update. This abstraction layer facilitates optimisations such
as connection pooling which are performed independently of the engine. New
types of data resource can be incorporated to OGSA-DAI by implementing the
appropriate mediator.

The GDS engine and activity model are not intended to be, or develop into, a
full workflow language. Rather, they are meant to provide an extensible mecha-
nism for supporting common data access, transformation and delivery tasks. The
basic unit of functionality within OGSA-DAI is an activity. These are examined
in more detail in the next section.

2.2 Activities

Activities can roughly be categorised into three main functional groups: (a)
statement activities interact with a data resource, (b) delivery activities deliver
data to or collect data from the service to third parties, and (c) transformation
activities perform transformation on the data while it is still in the service.

Activities expose existing capabilities already provided by a data resource,
e.g. allow SQL or XPath queries to be performed on the corresponding type of
data resource, or add functionality at the service level, such as transforming the
results of a query into another format before passing them to the next activity or
returning them to the client, or delivering the results to an ftp server, etc. They

Introduction to OGSA-DAI Services 7

Table 1. Supported activities provided with release 5 of OGSA-DAI

Activity Description
Relational Activities

sqlQueryStatement Run an SQL query on a relational resource
sqlUpdateStatement Run an SQL update statement on a relational resource
sqlStoredProcedure Invoke an SQL stored procedure8

relationalResourceManagement Create/drop database tables
XML Activities

xPathStatement Run an XPath statement against an XML database
xUpdateStatement Run an XUpdate statement against an XML database
xmlCollectionManagement Create/remove collections within an XML database
xmlResourceManagement Create/remove resources within an XML database

Delivery Activities
deliverFromURL/deliverToURL Retrieve/deliver data from/to a URL
deliverFromGDT/deliverToGDT Pull/push data from/to a service’s GDT portType
deliverFromGFTP/deliverToGFTP Retrieve/deliver data to/from a GridFTP server
deliverFromFile/deliverToFile Retrieve/deliver data from/to a file in the local file system
deliverToSMTP Deliver data in an e-mail using SMTP
inputStream Receive data through s GDT portType
outputStream Deliver data through a GDT portType
deliverToStream Deliver results to a stream

Transformation Activities
zipArchive ZIP compress the results
gzipCompression GNU-ZIP compress the results
dataStore Cache parameters and results
xslTransform Transform data using an XSLT

BinX Activities
fileQuery Query a BinX described file

provide an extensible framework that allows developers to add functionality to
a GDS. OGSA-DAI already provides a number of general activities that can be
employed to interact with a data resource, see Table 17. If these are found to be
insufficient, then more can be added by developers.

Activities are defined and configured at a GDSF and are made available to
the GDSs created by that GDSF. Each activity requires a Java implementation
together with an XML schema fragment that is used to express the syntax of the
XML representation of that activity in a perform document. Release 5 also allows
individual activities to be configured when they are used by perform documents–
configuration files are placed at the server side and allow the administrator to
modify behaviour without having to edit the activity implementation code.

This framework has been found to be sufficient for most purposes. However,
more work remains to be done. In the current model the syntax of activities is
not complete – there is no typing of the data inputs and outputs that flow in and
out of an activity. This makes it hard to automatically connect and thus compose
activities together, i.e. the user needs to know what kind of input/output two
activities have in order to chain them together. Also, the semantics are not
clear – one can add documentation for each activity in the XML schema fragment
but that is the only provision for deriving the semantics of that activity other

7 Unsupported activities include file, indexed file, and notification activities.
8 Currently, this is only supported for DB2 stored procedures.

8 K. Karasavvas et al.

than through its name. Again this imposes potential difficulties of meaningfully
connecting activities together in a generic framework; a human being would be
required to do this. In the next section we examine perform documents, which
aggregate activities together.

2.3 Perform Document

Perform documents collect together an XML representation of a set of activities.
It is worth noting that a user would not be expected to craft these documents by
hand. Instead, the client toolkit, which offers a programming abstraction of this
framework, described in section 3 would be used to generate the required XML.
The following listing shows the XML for a perform document that executes an
SQL query and delivers the results using ftp to a third party:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <gridDataServicePerform
3 xmlns="http://ogsadai.org.uk/namespaces/2003/07/gds/types"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://ogsadai.org.uk/namespaces/2003/07/gds/types
6 ../../../../schema/ogsadai/xsd/activities/activities.xsd">
7
8 <documentation>
9 This example performs a simple select statement to retrieve one row
10 from the test database and then delivers the results to an FTP location.
11 </documentation>
12
13 <sqlQueryStatement name="statement">
14 <expression>
15 select * from littleblackbook where id=10
16 </expression>
17 <resultSetStream name="output"/>
18 </sqlQueryStatement>
19
20 <deliverToURL name="deliverOutput">
21 <fromLocal from="output"/>
22 <toURL>ftp://anon:frog@ftp.example.com/home</toURL>
23 </deliverToURL>
24
25 </gridDataServicePerform>

Lines 2-6 contain the root element, gridDataServicePerform, and define the
appropriate XML name spaces and XML schema the document satisfies – note
the location corresponds to the standard server location where the OGSA-DAI
XML schema can be found. Lines 8-11 contain documentation – this is purely for
human consumption. Lines 13-18 and 20-23 contain the two chained activities;
the first one queries a relational data resource and streams the results to the
second activity, which delivers them to the specified URL. A data pipe is estab-
lished from one activity to the other by naming the output stream of the query
activity in line 17, resultSetStream, and connects this to the second activity by
specifying the same name in the sink fromLocal element that serves as the in-
put to the delivery activity on line 21. Thus, the connection is established. Note
that the username and password are explicitly embedded in the document – you
would not do this unless you were employing message or transport level security
and entertained a certain level of trust with your service provider. Although in

Introduction to OGSA-DAI Services 9

principle this sounds relatively simple you would not want to craft such docu-
ments by hand, which is tedious and error prone. Instead, you would use the
client toolkit, which is described next.

3 Client Toolkit

The client toolkit provides a Java client side library that allows perform docu-
ments to be easily constructed and used by applications wishing to communicate
with OGSA-DAI services. In addition, the toolkit manages the communications
with the OGSA-DAI services so the user need not concern themselves with this.
Part of the motivation for having this library is to provide an API that shields
developers from changes in OGSA-DAI. Developers need only learn this single
API to be able to write client software to access OGSA-DAI.

As an example consider the perform document that was outlined in the pre-
vious section. In this instance the whole process of using the OGSA-DAI services
is considered. First of all, one must know the service handle for a GDSF or ob-
tain one from a DAISGR – the client toolkit provides abstractions to do this
too. Here we assume that we already know of a suitable GDSF handle which is
used to create a factory object which in turn is used to create a GDS:

String handle = "http://example.com:8080/ogsadai/GridDataServiceFactory";
GridDataServiceFactory factory = ServiceFetcher.getFactory(handle);
GridDataService service = factory.createGridDataService();

The service object can be used later to destroy the GDS, in order to release any
resources no longer being used, using service.destroy(). Now the activities
for the request are created and chained together so that the output of the SQL
statement activity is streamed into the input of the delivery activity:

SQLQuery query = new SQLQuery("select * from littleblackbook where id=10");
DeliverToURL deliver = new DeliverToURL("ftp://anon:pass@ftp.example.com/home");
deliver.setInput(query.getOutput());

Finally these activities are aggregated into a composite request and sent to the
GDS where it is executed. The response object contains the status of each
activity in the request sent back to the user by the service.

ActivityRequest request = new ActivityRequest();
request.add(query);
request.add(delivery);
Response response = service.perform(request);

The contents of the response object may be accessed in various ways, e.g. we
can get a JDBC ResultSet from a relational query activity, or a XML:DB
ResourceSet from an XPath query activity. To simply view the results we can
get them as string by using the getAsString() method of the response object.

From this example one can see how easy it is to construct a perform doc-
ument and how the library manages all the communication and infrastructure
mechanisms. This improves usability and shortens the learning curve to develop
an OGSA-DAI client. The client toolkit is also extensible: new client-side ac-
tivities, corresponding to new server-side activities, can be added. In essence

10 K. Karasavvas et al.

a new client toolkit activity must serialise into the appropriate XML fragment
that trigger the corresponding server side activity – an abstract class must be
extended to do this. More information about the client toolkit is available in the
OGSA-DAI release documentation.

4 Future Directions

The deprecation of OGSI and changes to the DAIS specifications [WS-DAI,
WS-DAIR, WS-DAIX], no longer a single document, will require changes to
the underlying OGSA-DAI model. Moreover, OGSA now explicitly aim to
align with the Web Services Resource Framework (WSRF) set of standards
[WS-RP, WS-RL, WS-SG, WS-BF] being developed within OASIS. Globus is
moving towards WSRF as well. In the UK, there is a push towards using an
extended set of standards to those addressed in the Web Services Interoperabil-
ity (WS-I) Basic Profile [WS-I], termed WS-I+ [WS-I+], as an interim position
until the standards space settles down.

Technical preview versions of WSRF and WS-I+ of OGSA-DAI already exist
and are available. However, long term support for each of the OGSI, WS-I+
and WSRF versions of OGSA-DAI is not tenable. Development of the OGSI
version will stop after release 6, although there will still be support available for
projects using the OGSI version of OGSA-DAI. The OGSA-DAI distribution is
being refactored to allow support for a combined WS-I+ and WSRF OGSA-DAI
distribution. The client toolkit will have to be generalised to take these changes
into account. Now that DAIS appears to be stabilising some early prototyping
of the DAIS specifications will be undertaken – a relational prototype already
exists. As with all other Grid based projects a lot of changes are about to take
place. However, we feel that these are for the better and we aim to try and carry
our existing users with us and gain some new ones in the process.

Future releases will continue to extend the functionality of OGSA-DAI, par-
ticularly in the directions of transaction handling, heterogeneity management,
higher-level integration facilities, and performance improvement. This will in-
volve changes to the underlying architecture to increase concurrency and exploit
pipelined operations.

5 Conclusions

This paper has given a high-level overview and snapshot summary of the current
state and some future directions of OGSA-DAI. Readers are warned that much
detail and important information has been omitted, and the new releases and
previews represent significant changes. Those considering using OGSA-DAI are
therefore encouraged to obtain up-to-date and full information from the website,
www.ogsadai.org, and to contact the team, if they still have questions. Those
planning to use OGSA-DAI or already using it are warmly invited to join the
OGSA-DAI users’ group in order to help steer the future development priorities.
We also run regular training events.

Introduction to OGSA-DAI Services 11

A key question often asked is: ‘What is the point of using OGSA-DAI when
you already have a perfectly viable solution in JDBC?’. OGSA-DAI manages
JDBC access in the context of security mechanisms, exploits the emerging
strengths of Web Services and provides:

– Language independence, you do not necessarily have to use Java at the client
end9.

– Platform independence, you do not have to worry about the underlying op-
erating system that is being used or connection technology, drivers, etc.

– Multiple data models, XML resources can be handled within the same frame-
work as relational and other types of data resources, such as indexed file
collections.

– Extensibility through the addition of functionality at the service end such
as transformations and third-party delivery, etc. avoiding unnecessary data
movement.

– The OGSI based provision for metadata is powerful and generic, and will be
carried forward to new infrastructure platforms.

– Usefulness of the registry for performing dynamic service or resource discov-
ery based on service and resource metadata.

– Dynamic service binding process allowing binding to data resources.
– Composability, as services can be coupled to operate in combination to offer

more powerful capabilities such as distributed query processing. Composable
activity invocation within a perform document can be used to avoid round
trip latency and to handle convenient handling of intermediate results.

So, it is clear that using an OGSA-DAI solution does offer potential advantages
over a pure JDBC solution. If the extra facilities are not used, there is a per-
formance penalty for some relational operations. Work is underway to reduce
the penalty. OGSA-DAI is pioneering the new architectural possibilities for data
access and integration, and is supporting a large and growing number of projects
and will advance in capability and functionality as an extensible open framework,
to which contributions are very welcome.

Acknowledgements. This work is supported by the UK e-Science Grid Core Pro-
gramme, whose support we are pleased to acknowledge. We also gratefully ac-
knowledge the input of our past and present partners and contributors to the
OGSA-DAI project including: EPCC at the University of Edinburgh, IBM UK,
IBM US, NeSC, University of Manchester, University of Newcastle and Oracle
UK. All trademarks acknowledged.

References

[DAIS-GGF7] Chue Hong, N.P., Krause, A., Malaika, S., McCance, G., Laws, S.,
Magowan, J., Paton, N.W., Riccardi, G.: Grid Database Service Spec-
ification. Presented at GGF 7, 16th February 2003.

9 As yet, unsupported client toolkits have been developed for Perl, SML, and C.

12 K. Karasavvas et al.

[Data-Streams] Plale, B.: Using Global Snapshots to Access Data Streams on the
Grid, In proceedings 2nd European Across Grids Conference (Ax-
Grids04), Springer Verlag Lecture Notes in Computer Science, Vol.
3165, January 2004.

[eDiamond] Oevers, M., Collins, B., Knox, A., Williams J.: The Use of OGSA-
DAI with IBM DB2 Content Manager for Multiplatforms in the eDia-
MoND Project. Appeared at The Future of Grid Data Environments
Workshop at the Global Grid Forum 10 meeting, March 2004.

[OGSA] Foster, I. (editor), Berry, D., Djaoui, A., Grimshaw, A., Horn, B.,
Kishimoto, H. (editor), Maciel, F., Savva, A., Siebenlist, F., Sub-
ramania, R., Treadwell, J., Von Reich, J.: The Open Grid Services
Architecture, Version 1.0. 12th July 2004. Global Grid Forum.

[OGSA-DQP] Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Watson,
P., Fernandes, A.A.A.: OGSA-DQP: A Grid Service for Distributed
Querying on the Grid, Proc. 9th International Conference on Extend-
ing Database Technology (EDBT), 858-861, 2004.

[OGSI] Tuecke, S., Czajkowski, KI., Foster, I., Frey, J., Graham, S., Kessel-
man, C., Snelling, D., Vanderpilt, P.: Open Grid Services Infrastruc-
ture, Version 1.0, March 13, 2003.

[WS-RP] Graham, S. (editor), Treadwell, J. (editor): Web Services Resource
Properties 1.2 (WS-ResourceProperties) Working Draft 04, 10 June
2004.

[WS-RL] Srinivasan, L. (editor), Banks, T. (editor): Web Service Resource Life-
time 1.2 (WS-ResourceLifetime). Working Draft 04, 11 November
2004.

[WS-SG] Maguire, T. (editor), Snelling, D. (editor). Web Services Service
Group 1.2 (WS-ServiceGroup). Working Draft 03, 10 November 2004.

[WS-BF] Tuecke, S. (editor), Liu, L. (editor), Meder, S.: Web Services Base
Faults 1.2 (WS-BaseFaults). Working Draft 02, June 24, 2004.

[WS-DAI] Antonioletti, M., Atkinson, M., Krause, A., Laws, S., Malaika, S.,
Paton, N.W., Pearson, D., Riccardi, G: Web Services Data Access
and Integration (WS-DAI). May 21st 2004.

[WS-DAIR] Antonioletti, M., Collins, B., Krause, A., Laws, S., Magowan,, J.,
Malaika, S., Paton,N. W.: Web Services Data Access and Integration
- The Relational Realisation (WS-DAIR). May 21st 2004.

[WS-DAIX] Antonioletti, M., Hastings, S., Krause, A., Langella, S., Malaika, S.,
Laws, S., Paton, N. W.: Web Services Data Access and Integration:
The XML Realisation (WS-DAIX). May 21st 2004.

[WSDL] Christensen, E., Curbera, F., Meredith, G.,Weerawarana, S.: Web
Services Description Language (WSDL) 1.1. W3C Note 15 March
2001,

[WS-I] Ballinger, K., Ehnebuske, D., Gudgin, M., Nottingham M., Yend-
luri, P. (eds.): Basic Profile Version 1.0. Final Material. See:
http://www.ws-i.org/Profiles/BasicProfile-1.0.html.

[WS-I+] Atkinson, M., DeRoure, D., Dunlop, A., Fox, G.,Henderson, P., Hey,
T., Paton, N., Newhouse, S., Parastatidis, S., Trefethen, A.,Watson,
P., Webber, J.: Web Service Grids: An Evolutionary Approach. See:
www.omii.ac.uk/web service grids.htm for more details.

Using OGSA-DQP to Support Scientific
Applications for the Grid

M. Nedim Alpdemir1, Arijit Mukherjee2, Anastasios Gounaris1,
Norman W. Paton1, Alvaro A.A. Fernandes1, Rizos Sakellariou1,

Paul Watson2, and Peter Li2

1 Department of Computer Science,
University of Manchester,

Oxford Road, Manchester M13 9PL, UK
2 School of Computing Science,

University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, UK

Abstract. The data management problems in grid computing are often
challenging in many aspects such as data volumes, heterogeneity, struc-
tural complexity and semantic content. Thus, e-Scientists and scientific
application developers stand to benefit from tools and environments that
either hide, or help to manage, the inherent complexity involved in ac-
cessing and making concerted use of the diverse resources. This paper
describes OGSA-DQP, a high level data integration tool for service-based
grids, and illustrates how it can be used to support grid users, via an
example scientific study in bioinformatics. The paper also discusses var-
ious options for employing OGSA-DQP to handle data integration tasks
as service orchestrations involving both data and analysis services.

1 Introduction

Both commercial and scientific applications increasingly require access to dis-
tributed resources. Grid technologies have been introduced to facilitate efficient
sharing of resources in a heterogeneous distributed environment. However, from
its inception, grid computing has provided mechanisms for data access that lie at
a much lower level than those provided by commercial database technology [7].
This is despite the fact that the data management problems in grid computing
are not likely to be less complex, rather the contrary, insofar as in all relevant
aspects (viz., data volumes, structural complexity and semantic content) data in
the grid is likely to be at least as complex as that found in current commercial
environments. Furthermore, in those applications for which grid solutions seem
particularly appropriate (e.g., scientific ones), data is often more fragmented
and more in need of computationally-demanding analyses than in classical Web
applications (e.g., e-commerce ones). Thus, high-level data access and integra-
tion services are needed if applications that have large amounts of data with
complex structure and complex semantics are to benefit from the grid. This
paper briefly describes OGSA-DQP [1], a high level data integration tool for

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 M.N. Alpdemir et al.

service-based grids, and aims to illustrate how it can be used to support grid
users in accessing distributed resources in a bioinformatics context. The paper
also discusses how OGSA-DQP can be exploited to provide a relatively low-cost
implementation of complex scientific applications for the grid.

The rest of the paper is structured as follows: Section 2 briefly introduces
the service-oriented approaches to resource utilisation on the grid; Section 3 de-
scribes the architecture and usage of OGSA-DQP as a high-level data access and
integration tool for service-based grids; Section 4 illustrates how OGSA-DQP can
be exploited to support e-scientists in conducting their studies, through an ex-
ample bioinformatics application; Section 5 briefly discusses various options for
employing OGSA-DQP in more complex grid applications and finally Section 6
presents a number of conclusions.

2 Service-Oriented Architectures for Resource Utilisation

Service-based approaches [4] (such as Web Services and the Open Grid Services
Architecture) have gained considerable attention recently for supporting dis-
tributed application development in e-business and e-science. The service-based
approach seems to many a good solution to the problem of modelling a vir-
tual organisation as a distributed system, and is perceived to offer a convenient
paradigm for resource sharing through resource virtualisation. Web Services, in
particular in conjunction with the resource access and management facilities of
grid computing, show considerable promise as an infrastructure over which dis-
tributed applications in e-business and e-science can be developed. As such, it
is argued that uniformly treating the diversity of resources and applications as
services significantly simplifies their use and management [5].

One particular impact of service-oriented approaches on application devel-
opment, is the introduction of new techniques that permit various models for
aggregating distributed software modules as loosely-coupled compositions of
coarse-grained services to construct more complex applications [6]. Workflow lan-
guages such as Business Process Execution Language (BPEL) appear to be cen-
tral to service aggregation approaches. However, It is worth noting that although
it is likely that workflow languages will have a prominent role, service-based Dis-
tributed Query Processing (DQP) also offers service orchestration capabilities,
accomplishing system-supported optimisation of declarative requests with im-
plicit parallelism, a combination that should yield significant programmer pro-
ductivity and performance benefits for large-scale, data intensive applications.
OGSA-DQP is one approach to provide such capabilities.

3 OGSA-DQP: A Grid Service Framework for Data
Integration and Analysis

3.1 Overview

OGSA-DQP [1] is essentially a high-throughput distributed data-flow engine that
relies on a service-oriented abstraction of grid resources and assumes that data

Using OGSA-DQP to Support Scientific Applications for the Grid 15

sources are accessible through service-based interfaces. OGSA-DQP relies on in-
frastructure support from other grid Middleware at two distinct levels: it uses
the reference implementation of Open Grid Services Architecture (OGSA) [3]
viz., Globus Toolkit 3 (GT3) [8], which implements a service-based architecture
over virtualised resources referred to as Grid Services (GSs), thus enabling dy-
namic allocation of resources necessary for efficient evaluation of a distributed
query; it also builds upon OGSA-DAI [2] which implements Grid Data Services
(GDSs) that insulate users from certain aspects of data source heterogeneity,
ensuring that metadata and data held in a particular data source are accessed
via a standard, well-defined and uniform interface. By building on those layers,
OGSA-DQP delivers a framework that
– supports declarative queries over many Grid Database Services (GDSs) by

creating a union of the database schemas of the participating data sources.
– supports calls to external web services through insertion of the web service

operation invocations into a query, thereby combining data access with data
analysis;

– adapts techniques from parallel databases to provide implicit parallelism for
complex data-intensive requests; and

– automates complex, onerous, expert configuration and resource utilisation
decisions on behalf of users via its query optimisation module.

OGSA-DQP provides two services to fulfil its functions: The Grid Distributed
Query Service (GDQS) and the Grid Query Evaluation Service (GQES). The
GDQS provides the primary interaction interfaces for the user, collects the nec-
essary metadata, and acts as a coordinator between the underlying query com-
piler/optimiser engine and the GQES instances. The GQES, on the other hand,
is used to evaluate (i.e. execute) a query sub-plan assigned to it by the GDQS.
The number of GQES instances and their location on the grid is specified by
the GDQS, based on the decisions made by a query optimiser and represented
as an execution schedule for query partitions (i.e. sub-plans). GQES instances
are created and scheduled dynamically, to evaluate the partitions of a query
constructed by the optimiser of the GDQS.

Figure 1 illustrates the high-level architecture of OGSA-DQP, where the
client application queries multiple data resources via a global schema that presents
a union of the schemas of the participating data sources. Notice that OGSA-DQP
utilizes the computational resources and data resources available to it, via ser-
vices provided by a core grid middleware (i.e. OGSA and OGSA-DAI). As such,
by virtue of this core middleware support the query execution engine is con-
structed dynamically (i.e. at run time) by instantiating GQESs for each section
(or partition) of the distributed query plan, as stipulated by the query optimizer
encapsulated within the GDQS.

3.2 Using OGSA-DQP for Querying Distributed Data Sources

This section describes, briefly, how OGSA-DQP can be used in practice as a
high-level tool for retrieving and combining data from multiple data sources, as
well as feeding retrieved data into analysis services if desired.

16 M.N. Alpdemir et al.

GQ ES

GQ ES GQ ESGQ ES

GDQS
OGSA-DQP

. . .

Client Application

Web Application Servers (e.g. Tomcat - Axis)

Data Access and Integration Framework (OGSA-DAI)

GDS GDSGDS

Global Schema
(Union of local schemas)

Local Schema

Computational Grid Resources

Control flow

Data flow

OS & Network Layer

query / response

Query
Execution
Engine

Grid Service Infrastructure (OGSA / GT3)

C
or

e
G

ri
d

 M
id

d
le

w
ar

e

Fig. 1. A High-level Architecture of OGSA-DQP

Starting a Query Session. Preparing OGSA-DQP for query submission in-
volves identifying the data sources and the analysis services to be used in a
query session. This process may start with a search and discovery phase at the
end of which the user finds the set of resources s/he is interested in. OGSA-
DQP does not currently offer direct support for this initial discovery process,
largely because this is conceived to be an application level functionality. Instead,
it is assumed that the user has already identified the required resources. Thus,
the user submits an XML document containing the list of the data sources and
analysis services as illustrated by the following XML fragment:

<GDQDataSourceList>
<importedDataSource>

<GDSFactoryHandle>
http://host:port/ogsa/services/ogsadai/ProteinDBGDSFactory

</GDSFactoryHandle>
</importedDataSource>
<importedDataSource>

<GDSFactoryHandle>
http://host:port/ogsa/services/ogsadai/GenesDBGDSFactory

Using OGSA-DQP to Support Scientific Applications for the Grid 17

</GDSFactoryHandle>
</importedDataSource>
<importedDataSource>

<GDSFactoryHandle>
http://host:port/ogsa/services/ogsadai/MicroarrayDBGDSFactory

</GDSFactoryHandle>
</importedDataSource>
<importedService

name="EntropyAnalyser"
wsdlURL="http://host:port/services/EntropyAnalyserService?wsdl"/>

</GDQDataSourceList>

Note that the data sources are indicated by the Grid Data Service Factory
(GDSF) handles of the services that wrap those data sources. The analysis ser-
vices are indicated by URLs that point to the WSDL documents describing those
services.

Client GGDQS

GDQ Resource List Doc. (XML)

 Query
Optimiser

DB Schemas

GGDSF

. .
 .

GGDSF

Web
Services

WSDL doc

DB Schema (XML)

DB Schema (XML)

Comp. Resource
Metadata

1

2

3

2

4

Fig. 2. Metadata Retrieval During OGSA-DQP Set-up Phase

As illustrated in Figure 2, on receipt of the XML document containing the
resource list (interaction 1), the GDQS obtains metadata about each resource
in the list (interactions 2 and 3) to aid the query optimiser in generating an
efficient execution plan. This metadata includes database schemas (both the
logical structure of the data and some physical characteristics such as index
information, cardinality, row sizes, etc.) that are obtained from the data sources,
and WSDL documents that are obtained from the web services.

Submitting Query Requests. After the GDQS is set-up with a resource set
and a query session is initiated, the user can submit multiple query requests
until the GDQS instance is destroyed, which effectively terminates the session.

As illustrated in Figure 3 (a), for each query request a GDQS instance com-
piles, optimises, partitions and schedules the query to generate a distributed
query plan optimised for specific requirements of the submitted query. Each
partition in the distributed query plan is assigned to one or more execution
nodes. The GDQS, then, commands the creation of GQESs as stipulated by the
partitioning and scheduling decided on by the compiler (Figure 3 (b), interaction
1), and co-ordinates the GQESs into executing the plan. Each execution node

18 M.N. Alpdemir et al.

Client

GGDQS

G
 Logical
Optimiser G

 Physical
Optimiser

G Partitioner GScheduler
G

O
Q

L
 P

ar
se

r

GDS Query
Request Doc.

OQL
Query String

Distributed Query
 Plan Doc.

print

exchange

hash join
scan

exchange

scan

P1

P2

P3

Polar* Query Optimiser Engine

GDQS

 GDS1

GGQES 2

2

1

1

2

3

3

Distributed Query
Execution Engine

sub-plan

sub-plan

sub-plan

3

data blocks

data blocks

1

(a) (b)

 GDS2

GGQES 1

GGQES 3

sub-query

sub-query

Fig. 3. Query Optimisation and Execution Process

corresponds to a GQES instance, each of which initiates its evaluation upon
receiving its plan partition. The whole process effectively constructs a tree-like
data flow system with the GDQS instance at the root, GDS instances at the leaf
and a collection of GQESs in the middle (Figure 3 (b), interactions 2-3).

4 How Grid Users Can Benefit from OGSA-DQP

This section illustrates OGSA-DQP in use as part of the solution to a bioin-
formatics problem. First a brief explanation of the problem is provided in Sec-
tion 4.1, followed by a description of how OGSA-DQP is put into use to aid in
providing a solution, in Section 4.2.

4.1 An Example Bioinformatics Application: The Graves’ Disease
Scenario

The myGrid project (www.mygrid.org.uk) has developed an application that
uses a number of middleware services to build in-silico tools for a study that
seeks to identify genes and SNPs associated with a genetic autoimmune condition
known as Graves disease (GD). The condition is an disease of the thyroid in
which the immune system of an individual attacks the cells of the thyroid gland
resulting in hyperthyroidism (thyroid overactivity).

Researchers studying human genetic disease such as this, ultimately wish to
establish which genes are affected in the diseased state, the changes in those
genes between individuals and the underlying molecular mechanisms that lead
to the autoimmune response. The hypothesis is that single nucleotide polymor-
phisms (SNPs) are instrumental in the disease mechanism. Thus, there are three
objectives:

Using OGSA-DQP to Support Scientific Applications for the Grid 19

Fig. 4. OGSA-DQP GUI Client Screen Shot showing the Query Plan and the Results

1. Investigate what genes and loci are involved in GD.
2. Examine which single nucleotide polymorphisms (SNPs) located in genes are

involved in GD.
3. Develop genotyping experiments to test the above hypotheses.

One of the several in-silico experiments designed for the whole study is an
annotation pipeline that aims to help the user establish which genes in the can-
didate gene pool may be involved in the diseased state [9]. In other words, the
main purpose is to retrieve information associated with candidate genes that
were differentially expressed in GD. The user can assimilate the information
provided and make a decision as to which gene or genes they wish to examine
in more detail, and ultimately take back to laboratory studies. To achieve that,
however, it is necessary to return links to annotation data from a range of ge-
nomic databases and the literature, for each gene in the dataset. A distributed
query over grid enabled databases can achieve the required data integration at a
relatively low cost compared to other approaches that require a separate, isolated
interaction with each of the databases and do the integration as a custom post-
processing step (e.g. application-specific scripting solutions, or workflow-based
solutions that either include application-specific logic in each of the data-access
services or a separate service in the workflow to perform the integration).

20 M.N. Alpdemir et al.

4.2 The Distributed Queries for the Annotation Pipeline

The key functionality required in the annotation pipeline is the ability to map
from the Affymetrix probe set identifiers referencing a candidate gene to sequence
or database identifiers in biological databases. For the nucleotide sequence an-
notation pipeline, the mappings from an Affymetrix probe set ID to EMBL
accession number, and OMIM, GO and Medline identifiers are required. Some of
those mappings can be generated by using existing annotation tools and stored
in a custom database. In the example application presented in this paper, the
mapping between probe set IDs and OMIM, GO and Medline IDs are stored in
a single database. Thus, in total three distributed databases need to be accessed
to retrieve and join the required information. Those are:

1. The AffyMapper database (named as Map tabs in the query below) which is a
custom database created by obtaining mappings using Affymetrix’s NetAffx
gene annotation tool.

2. An arbitrary microarray database (named as expressions in the query below)
containing gene expression data from the Affymetrix microarray analyses.

3. The Gene Ontology (GO) database (named as goterms in the query below).

The following is an example query that integrates data from the three
databases listed above:

QUERY1:
select

e.ProbeSetId, m.OMIM, m.Molecular_Function_GO,
m.Biological_Process_GO, m.Cellular_Component_GO

from
e in expressions, m in Map_tabs, g in goterms

where
e.Signal>1000 and e.ProbeSetId = m.Probe_Set_ID and
m.Molecular_Function_GO = g.id and g.name like <input name>

The query selects those Affymetrix probe set IDs which have an expression
signal over 1000 and which have also been annotated with a given GO ID. In
other words, the query answers questions such as “which genes are expressed in
my samples and have a molecular function activity x?”.

Figure 4 illustrates the OGSA-DQP GUI client that was used to execute the
example query. The GUI client supports an administrator mode where a sys-
tem administrator can create and save configurations with a resource set and
pre-defined queries, and a user mode where a more novice user can load a config-
uration, execute pre-defined queries or add more queries if necessary. The screen
shot illustrates the user mode and includes three small windows on the left repre-
senting – from top to bottom in order– the query text, the tabular representation
of the union of the database schemas of the participating data sources, and the
query results in tabular form. The figure also shows a graphical representation
of the query execution plan on the right hand side of the window. The plan is
dynamically generated for each executed query and is annotated to indicate the
partitioning and scheduling of the distributed plan (denoted by dashed rectan-
gular boundaries), algorithms employed to evaluate each sub-plan (denoted by
circular nodes with textual annotations such as HASH JOIN, TABLE SCAN,

Using OGSA-DQP to Support Scientific Applications for the Grid 21

Fig. 5. The Query Plan with the BLAST Call

etc.) and the location of the servers that were used to execute a particular sub-
plan (denoted by textual labels above the dashed rectangular boundaries).

OGSA-DQP can also be used to implement another step in the GD study
which involves applying the Basic Local Alignment Search Tool (BLAST) anal-
ysis service. The BLAST call here can be used for identifying PDB records that
might provide information on the structure of the protein that is encoded by the
nucleotide sequence of the candidate gene. An example query is given below:

QUERY2:
select

e.ProbeSetId, m.Sequence_ID, NCBIblast(s.sequence)
from

e in expressions, m in Map_tabs, s in sequences
where

e.Signal > 1000 and e.ProbeSetId = m.Probe_Set_ID and
m.Molecular_Function_GO like <input GO:Id>

22 M.N. Alpdemir et al.

This query includes a call to a Web Service that wraps the BLAST anal-
ysis program hosted by the European Bioinformatics Institute (EBI) (see
http://www .ebi.ac.uk/blastall/index.html) and it demonstrates a powerful fea-
ture of OGSA-DQP; that of combining invocations to analysis programs with
data retrieval in a single query statement. Notice that the gene sequences re-
trieved from the sequences database (which may potentially constitute a set),
are fed into the NCBIblast function call. Figure 5 shows the distributed query
plan generated for QUERY2. Note that the sub-plan that contains an invocation
to BLAST web service (i.e. OPERATION CALL operator) is parallelised across
two nodes (i.e. servers) on the grid (indicated by the textual label above the
rectangular box in the middle with two machine names separated by a comma),
since BLAST is a relatively high-cost operation.

Note that during execution of the queries, the databases are accessed via grid
services (i.e. GDSs) and the intermediate data processing computations are also
carried out by grid services (i.e. GQESs) all of which are linked with dynamically
forged data-flow and control-flow paths, which effectively constructs a service or-
chestration framework. Note also that with the second query, the service orches-
tration is extended beyond data services and internal query evaluator services
(i.e. GQESs) to external (i.e. third party) analysis services, making OGSA-DQP
a declarative (i.e. query-driven) alternative to procedural (e.g. workflow-based)
service-orchestration systems.

5 Alternative Methods for Using OGSA-DQP in Grid
Applications

Although Section 4 described how OGSA-DQP can be used via a stand-alone
GUI client, this is not the only way OGSA-DQP delivers its functionality. As
OGSA-DQP is itself a Grid Service, exposing a programming interface in con-
formance to interaction patterns specified by the OGSA-DAI project, it can be
integrated into higher-level applications in at least two other ways:

1. An application can discover the GDQS from public service registries, and
interact with it via its service interface to submit the list of resources re-
quired for the distributed queries, and subsequently to pass the query re-
quests themselves. The results received as a response to the query requests
can then be transmitted to other processing modules in the application or
presented to the user via application-specific user interfaces.

2. The GDQS can be invoked in an intermediate step in a more complex work-
flow involving calls to other services. This is a particularly interesting case
as it leads to simplified workflows due to the replacement of many inter-
linked activities (i.e. a sub-workflow) with a call to OGSA-DQP as a single
task, and could potentially result in performance gains, since OGSA-DQP
optimizes and parallelises its query plans.

Using OGSA-DQP to Support Scientific Applications for the Grid 23

6 Conclusions and Future Work

This paper has described a distributed query processing service, namely OGSA-
DQP, for service-based grids, and demonstrated how it can support the develop-
ment of scientific grid applications via an example application from the bioinfor-
matics domain. In summary, developers and users of scientific applications for
the grid can stand to benefit from OGSA-DQP from several angles:

1. The users of the grid can benefit from OGSA-DQP as a generic data inte-
gration and analysis tool. A typical use-case involves deploying OGSA-DQP
to a virtual organisation application server and configuring it with a set of
frequently used data and analysis resources; a procedure most likely to be
carried out by a system administrator. The configured OGSA-DQP can then
be used to pose queries against the resource set. Section 4.2 described how
the user mode of the OGSA-DQP GUI client allows one to query a set of
resources.

2. The developers of scientific applications for the grid can delegate data inte-
gration tasks to OGSA-DQP, to implement a distinct functional part of a
sophisticated application. It is worth noting that since a GDQS is fully com-
pliant with data delivery and transformation patterns specified by OGSA-
DAI, the application can command the GDQS to channel the results to
another Grid Data Service, to send the results to a remote file system via
FTP, to compress and save the results to the local file system, or to deliver
the results asynchronously in blocks via streaming. See the OGSA-DQP user
guide at www.ogsadai.org.uk/dqp for details.

3. As programming practice evolves from traditional coding models to service
composition or service coreography, the developers of scientific application
workflows can employ the GDQS to undertake the orchestration of a sub-set
of services required for the overall solution. Our future work plans include
integrating OGSA-DQP into various workflow execution environments, and
carrying out more quantitative research on comparing performance charac-
teristics of the two.

Acknowledgements. The work reported in this paper has been supported by
the UK e-Science Programme.

References

1. M. Alpdemir, A. Mukherjee, N. W. Paton, P. Watson, A. A. Fernandes, A. Gounaris,
and J. Smith. Service-based distributed querying on the grid. In M. E. Orlowska,
S. W. M. P. Papazoglou, and J. Yang, editors, the Proceedings of the First Interna-
tional Conference on Service Oriented Computing, pages 467–482. Springer–Verlag,
15–18 December 2003.

2. A. Anjomshoaa et al. The design and implementation of grid database services in
OGSA-DAI. In S. J. Cox, editor, Proceedings of UK e-Science All Hands Meeting
Nottingham. EPSRC, 2–4 September 2003.

24 M.N. Alpdemir et al.

3. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. Technical
report, OGSI-WG, Global Grid Forum, 2002. Draft 2.9, June 22, 2002.

4. K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web Services
Architecture. IBM Sys. Journal, 41(2):170–177, 2002.

5. S. Graupner, V. Kotov, A. Andrzejak, and H. Trinks. Service-centric globally dis-
tributed computing. IEEE Internet Computing, 7(4):36 – 43, July/August 2003.

6. R. Khalaf and F. Leymann. On web services aggregation. In B. Benatallah and
M. C. Shan, editors, Proceedings of VLDB Technologies for e-Services Workshop,
LNCS 2819, pages 1 – 13. Springer–Verlag, 2003.

7. R. W. Moore, C. Baru, R. Marciano, A. Rajasekar, and M. Wan. Data-Intensive
Computing. In I. Foster and C. Kesselman, editors, The Grid: Blueprint for a New
Computing Infrastrcuture, chapter 5, pages 105–129. Morgan Kaufmann, 1999.

8. T. Sandholm and J. Gawor. Globus Toolkit 3 Core A Grid Service Container
Framework. Technical report, 2003. www-unix.globus.org/toolkit/3.0/ogsa/docs/.

9. R. Stevens et al. Performing in silico experiments on the grid: a users perspective.
In S. J. Cox, editor, Proceedings of UK e-Science All Hands Meeting Nottingham,
pages 43 – 50. EPSRC, 2–4 September 2003.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 25 – 37, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Mobile Agent-Based Service Provision in
Distributed Data Archives

 Christos and Omer F. Rana

University of Wales, Cardiff (UK)
{geolos, o.f.rana}@cs.cf.ac.uk

Abstract. An agent-based architecture of an active Digital Library (DL) is first
described, to illustrate how electronic service provision can be supported
through the use of agents. The use of mobile agents is presented as a key
enabler for allowing services to be combined from a variety of providers, each
of which provide a subset of the total required service. Load balancing
approaches are then used to illustrate how particular performance criteria can be
achieved in service provision. Extrapolation of the approach to the general
Service-Oriented computing model is also discussed. A DL composed of multi-
spectral imagery of the Earth, as part of the Synthetic Aperture Radar Atlas
(SARA) is then used to illustrate the concepts described. The load balancing
technique proposed is based on a combination of the state and model-based
approaches. Experimental results demonstrating the distribution of agent load
among the servers that constitute the DL, and the optimization of performance
provided by the adaptability of the model employed is presented. Such an
approach is particularly suited to Grid environments, which can involve a
composition of services from a variety of distributed data resources.

1 Introduction

Digital Libraries (DL) provide a useful way to group a collection of services and
digital objects that may be used in a particular context. DL research has often focused
on providing static content that may be subsequently accessed in a variety of ways.
Recent focus on active DLs, whereby content from a collection of different
repositories may be aggregated, provides useful parallels with work in Service-
Oriented computing. Such repositories can be implemented using specialized
hardware, and often support domain-specific interfaces. Accessing the content
available within such a DL through the use of intelligent agents provides an important
step in re-purposing such DL content. An agent, in our work, is seen as software
capable of conforming to FIPA standards1, and having a very specific functionality
(role) within a larger system. Interaction between such agents is then based on
demands made on them by other agents. In this way, a collection of agents can be

1 FIPA: http://www.fipa.org/.

Georgousopoulos

26 C. Georgousopoulos and O.F. Rana

used to provide a service-based layer to access the contents of a DL in a variety of
different ways. The service-based architecture is demonstrated in the context of the
Synthetic Aperture Radar Atlas (SARA), described in section 2. Load balancing
issues to support performance-sensitive service delivery are described in section 3.
Section 4 presents the proposed approach of load balancing for an active DL,
followed by performance results in section 5. Conclusions follow in section 6.

2 The SARA Agent-Based Architecture

SARA is an active DL of multi-spectral remote sensing images of the Earth from the
SIR-C Shuttle mission. Web-based online access is provided to a library of data
objects at Caltech and the San Diego Supercomputer Center in the US, and the
University of Lecce in Italy. The objective of the SARA project is to develop an
infrastructure for a high-speed, high-volume, multi-protocol distributed database,
together with a means to attach distributed computing resources for data conversion,
visualization and knowledge discovery [13]. A prototype Multi-Agent System (MAS),
which comprises both intelligent and mobile agents, has been developed to manage
and analyze data in the SARA DL [8]. The SARA architecture is composed of a
collection of information and Web servers, each of them supporting a group of agents.
Information servers support Local Interface Agents (LIA), whereas Web-servers
support User Interface Agents (UIA). The information-servers manage the
computational resources and data repositories to support the SARA active DL –
where the data repositories generally contain pre-processed images or geospatial data
about a given region. Figure 1 represents the SARA architecture and the multi-agent
interaction. Our approach is based on localizing the most complex functionality in
non-mobile LIAs, which remain at one location, providing resources and facilities to
lightweight mobile agents that require less processor time to be serialized, and are
therefore quicker to transmit. LIAs are stationary agents that provide a set of pre-
defined services. The primary motivation for using mobile agents are: (a) the
avoidance of large data transfers – of the order of Terabytes, consisting of sometimes
proprietary data, (b) the ability to transfer user developed image analysis algorithms,
and (c) the ability to utilize specialized parallel libraries.

SARA may be accessed by users via a Web-based GUI or via other FIPA-
compliant agents (as part of an application) via an intermediate gateway; the gateways
provide the interoperability layer of the architecture, described in detail in [5]. The
Web-based interface allows a user to query a collection of SAR images, and provides
the ability to further fuse the results with data available locally to the user. Such a
request is received from UAA – trace the numbers in figure 1 – that creates a mobile
agent i.e. URA on behalf of the user and forwards the request. After dispatch, the
mobile agent is responsible of migrating to the information-servers and interacting
with the local stationary agents to fulfill the user’s request. The stationary agent LAA
is responsible for supplying the URA with information about accessing the data
repository at the local server, whereas the LRA’s objective is to execute a query on
the data source on behalf of the URA.

 Mobile Agent-Based Service Provision in Distributed Data Archives 27

Every stationary agent implementation consists of a number of different Java
classes – allowing modularity and extensibility of the agent. In this instance, the
amendment or introduction of a new service provided by an existing agent may be
easily achieved without affecting the rest of the agent’s code and a new Java class
may be attached to an agent. For example, the maintenance of an information-server’s
data repository by a future DBMS may require updates only to a part of LAA code.
Details of the architecture, describing system integration and data management issues
can be found in [12,17].

3 Load Balancing

Generally, load balancing aims to improve the average utilization and performance of
tasks on available servers, whilst observing particular constraints on task execution
order. Assuming agents have a set of tasks to execute, it is necessary to identify how
these tasks may be distributed across available servers. Hence, workload distribution
must consider both the number of agents on a server and the number of tasks being
executed by each agent. Load balancing can be either static or dynamic [9] according
to the multi-agent system in which it is being considered. In static load balancing
tasks cannot be migrated elsewhere once they have been launched on a specified
server. In dynamic load balancing a task may migrate to another server, utilizing the
agent’s mobility. Keren and Barak [2] show that dynamic load balancing outperforms
the static case, with a 30-40% improvement over the static placement scheme.

Fig. 1. The SARA agent-based architecture

EXSA

URAS

URA

URA

AGENT ENVIRONMENT

AGENT ENVIRONMENT

LAA LRA

LMAUAA
UMA

LSA

LIGA

DB

FILE
ARCHIVE

COMPUTE
SERVER

META-DATA

URA

LAA LRA

LMA

LSA

LIGA

Web Server

Voyager pla tform

Voyager platform

FIPA-OS platform

FIPA-OS p latform

EXSA

URA

UAA UMA

Web Server

Voyager pla tform

FIPA OS l f

CLIENT

EX MAS

EX MAS

CLIENT

EX MAS

Web SERVER 1
Information SERVER 1 Information SERVER 2

URAS

AGENT ENVIRONMENT

Voyage r platform

FIPA-OS platform

EX MAS

Web SERVER 2
message exchange

creation o f agent

Management agent’s interaction

movemen t

send/rece ive request

hidden ar chitectural details

FIPA-com pliant gateway

UIA: User Interface Agent

URA: User Request Agent
UAA: User Assstant Agent

LIA: Local Interface Agent
LAA:
LMA:
UMA:

LSA:
LIGA :
URAS:
EXS A:

 Local Assistant Agent
 Local Management Agent
Universal M anagemen t Agent

Local Secu rity Agent
Local InterGration Agent
URA’s Servant
Extermal Service Agent

LRA: Local Retrieval Agent

DB

FILE
ARCHIVE

COMPUTE
SERVER

META-DATA

28 C. Georgousopoulos and O.F. Rana

There are two basic approaches to distribute tasks among servers: the state-based
and the model-based approach. In the state-based approach, information about the
system state is used to determine where to start a task. The quality of this decision
depends on the amount of the state data available. Gathering the data is expensive, but
leads to a more accurate decision. In the model-based approach, load balancing
depends on a model which predicts the system state and which may be inaccurate.
Model-based approaches are more difficult to implement as they involve the
derivation of an initial model, and the need to adapt the model over time.

In state-based load balancing, a common approach for managing system state and
load is the market mechanism to value resources and achieve an efficient match of
supply and demand for resources. Examples include Spawn [3] (based on a negotiated
auction protocol), Dynast [10] and OCEAN [11] based on non-negotiable pricing
mechanisms. System state may be accumulated in different ways, via specialized
monitoring agents, such as Mats [14] and Traveler [6]. In the FLASH [16] system a
system agent maintains information about the whole system state and passes it to node
agents on each server in the network. Node agents monitor locally residing mobile
agents. User agents (which are mobile) are responsible for the load balancing of the
parallel application, and migrate through a cluster searching for free resources. Their
migration decisions are based on internal states as well as internal and external events.

Almost all the systems that explore the model-based approach use distribution of
CPU load and expected process/task lifetime to decide if and when to migrate.
Malone’s Enterprise [15] uses a market mechanism, and Challenger [1] uses a
learning-based approach. Eager et al. [7] utilize concurrent execution to improve
resource usage. Most of these approaches however cannot easily adapt to changing
system workloads.

4 The SARA Load Balancing Mechanism

The SARA load balancing mechanism combines model-based and state-based
approaches. The agents’ tasks are classified into simple and complex. Simple tasks
involve data gathering procedures. Whereas complex tasks filter the data retrieved
from a simple task e.g. based on an image processing algorithm. Complex tasks
require more processing power and time, and are assumed to less in number than
simple tasks.

State-based load balancing in SARA is similar to the FLASH [16] approach, as
specialized management agents (MAs) maintain a global view of the system, and are
positioned in every server. They are used to gather, disseminate and update the system
state information. This is because an active DL may be composed of a collection of
different information and computation resources (though some might be replicated) and
where the resources needed by each task are unknown before its initiation, efficient load
balance may only be achieved with a global view of the system. In our system, decisions
on load balancing are supported though the MAs and not the mobile agents (in contrast
with FLASH). The advantages of the MAs having control over such decisions leads to:
(a) minimization of information transmitted over the network, (b) minimization of the
mobile agents’ size, and (c) better overall system optimization, as discussed in [4].

 Mobile Agent-Based Service Provision in Distributed Data Archives 29

4.1 Model-Based Load Balancing

The model-based approach in SARA is mainly based on the servers’ CPU utilization,
and emphasis is given to the prediction of an agents’ task lifetime. The model adapts
over time due to the information gathered from the state-based approach. Reliable
capture of system state is important, and therefore the information exchanged between
the MAs is a very important factor for prediction. Firstly because the efficiency of the
model depends on it (i.e. quality of information), and secondly because the greater the
amount of information the higher the risk for an increase in network load. The main
information exchanged in state-based approaches, is the number of agents on each
server and the number of available servers along with their utilisation indexes. A
second factor in either state-based or model-based approaches is the utilization of the
servers used in a network, in relation to their processing power. Irrespective of the
algorithm used for the distribution of tasks among the available servers, a common
policy is that a task should be assigned to the least loaded server i.e. the one with less
utilization – assuming that servers are of equal processing power. Consequently, the
more accurate the estimation of a server’s utilization, the better the load balancing
decision.

4.2 Estimation of a Server’s Utilization

The utilization of a server at any point of time is directly correlated with its load i.e.
the tasks being executed at that time. Malone [15] defines the utilization of a system
by the expected amount of processing requested per time unit, divided by the total
amount of processing power in the system, and give by: () LU μα ⋅= ; where, α is the

average number of job arrivals per time unit, μ is the average job length, and L is the
total processing power in the system. In the SARA algorithm-model this formula is
used to evaluate the utilization of each server separately. Therefore for a given server,
α corresponds to the number of agents on that server (assuming that there is a one
task per agent), μ to the average task time of the α agents, and L to the total
processing power of the hosting server. A server’s utilization in relation to its
processing power L, can be estimated. Such a comparison on utilization values helps
identify a server that will be unloaded first i.e. will accomplish all of its tasks sooner
than any of the rest of the servers. Accuracy of estimating a server’s utilization is
based on a perfect estimation of the agent task lifetimes. The more accurate the
average task time μ of agents , the more reliable the corresponding server’s
utilization.

The actual utilization of a server can be measured by using specialized
routines/utilities (like xload or ps, available on the Unix operating system) that
provide the percentage CPU usage. FLASH makes use of such a scheme to acquire
the servers’ utilization. The difference between those kinds of routines and Malone’s
approach is that while the former provides the current utilisation (CPU usage) of a
server the latter also denotes a value of when a server will be unloaded, and may be
used as a predictive tool. As a server’s CPU usage changes frequently, decisions on
load balance should not only rely on the current utilization of each server, but rather
on which server will be unloaded first in the future. The advantage of using Malone’s

30 C. Georgousopoulos and O.F. Rana

formula is that apart from estimating utilization, it is also possible to predict it before
the assignment of a new task to that server, given that the lifetime of the
corresponding task is known.

4.3 The Model

Load balancing decisions are based on a model which accepts as input an agent’s
requirements and the system state information, and gives as output the appropriate
server(s) where the particular agent should migrate to in order to fulfill its task. The
model is a function of the: (1) agents’ tasks, (2) servers’ utilization (workload), (3)
availability of resources at the server, and (4) network efficiency. The model may be
better expressed with reference to the agents’ task as a tree structure, depicted in
figure 2. For each of these cases indicated by numbers 1-7, the itinerary of a mobile
agent is constructed based on the factors stated above.

As described earlier, an agent task might be simple or complex. A simple agent
task which undertakes the acquisition of data composed of a collection of SAR
images may be either completely new, exactly the same or similar (part of it) to a task
performed by another agent in the past. The coordinates of the images that have to be
collected contribute in comparing simple agent tasks. A complex agent task may be
considered as an extension of a simple one since it concerns the filtering of the results
acquired by a processing algorithm that exists on a compute server, referred to as
fixed filter, or by a custom one provided by the user.

Fig. 2. Representation of all possible cases of an agent’s task as a tree structure

The itinerary of an agent is constructed by its local MA each time before the
initiation of its task. The itinerary of an agent with a simple task comprises a list of
server addresses, with the appropriate resources in descending order, based on the
servers’ workload which can serve the agent’s task. The first server on the list is
characterised as the ideal one where the agent can accomplish its task fastest, and the
rest provide alternative option of migration.

Since the acquisition of information precedes its filtering, the construction of an
agent’s itinerary with a complex task requires input from the MA twice. Initially, an
itinerary composed of suitable servers is created for the acquisition of the appropriate
data (a simple agent task for instance), subsequently a second itinerary for the
processing of the data (after they have been collected) consists of a list of compute

Agent’s Task

needs
filtering

needs
filtering

partial ly
the same

exactly
the same

custom
filter

custom
filte r

fixed
fi lter

fixed
filter

.

s imilar (cached) not similar (not cached)

does not
need filtering

does not
need filtering

 Mobile Agent-Based Service Provision in Distributed Data Archives 31

servers. The existence of two separate itineraries is compulsory. Firstly because it is
impossible to decide on which compute servers a filtering task can be performed, as
the amount and kind of data to be processed is unknown. Secondly, on a dynamic
environment where server/resource conditions change frequently, decisions on load
balancing must be taken directly before the initiation of a task. Hence, the
construction of an agent’s itinerary with a simple task is mainly based on the current
utilization of the available servers, whereas the itinerary of an agent with a filtering
task (since its lifetime can be estimated) is mainly based on the predicted utilization
of the available servers i.e. the utilization of the servers that would result after the
execution of the particular task on each of them. Cases 1 to 5 in figure 2 occur when
an agent’s task is similar to a task performed by another agent in the past, whereas
cases 5 to 7 occur when a task has not been performed previously.

4.4 Adaptability of Model

The Enterprise and Challenger model-based approaches to load balancing use
Malone’s formula of system utilization. Their model is based on the distribution of
CPU load and expected lifetime of tasks. However, it is sometimes impossible to
estimate task lifetimes beforehand (e.g. the time a user is running a remote
application) or such estimates may be erroneous. To deal with such errors in
estimation, the Enterprise system uses an estimation error tolerance parameter. If a
task takes significantly longer than it was estimated to take (i.e. more than the
estimation error tolerance), the server running the task aborts it, and notifies the user
who initiated the task that that task has been cutoff. This cutoff feature prevents the
possibility of a few users or tasks monopolizing an entire system. Challenger on the
other hand introduces learning behavior in the bidding agents to deal with errors in
estimating task completion times. In Challenger, those agents who misestimate the
lifetime of their tasks are penalized. Therefore, during a bid evaluation process, each
agent’s bid (i.e. lifetime of its task) is adjusted by multiplying it by the agent’s current
inflation factor. For instance, if an agent has recently been making perfectly accurate
bids, its inflation factor will be 1.0 and its bid will not be altered. Otherwise, if an
agent has been recently turning in task completion times that are twice as long as what
it estimated, then its bid will be multiplied by an inflation factor of approximately 2.0.

The SARA model is based on simple agent tasks for which the lifetime is predicted
to be equal to the average task completion time in previous runs. For complex tasks,
lifetime can be estimated based on calculations on the collected data to be filtered.
The major parameter on distributing tasks among the servers is the workload on the
available servers. If the lifetime of complex tasks was unknown, then the model
would not function properly, since complex tasks influence the utilization of a server
significantly more than simple tasks. In order for the model adopted in SARA to be
applicable to other systems in which the lifetime of complex tasks is impossible to
estimate or predict, or where lifetime of tasks are erroneous, the model should provide
a means of self-adapting to such error estimations. The policy of Challenger system
on penalizing the agents for misestimating the lifetime of their tasks based on prior
recorded estimations cannot be followed by the SARA model, because in SARA each
user request (task) is represented by a different agent. Whereas the approach of the
Enterprise system on setting a threshold value, which when exceeded leads to task

32 C. Georgousopoulos and O.F. Rana

termination is impractical for tasks with unknown lifetimes. The adaptability in the
SARA model is intended for systems in which the lifetime of complex tasks cannot be
estimated. The algorithm is activated by the MAs and its objective is to monitor the
utilization of every server and amends it when it is miscalculated, due to the
introduction of agent tasks with unknown lifetime in the servers.

4.4.1 The Adaptation Algorithm
The utilization of a given server has a direct relation to the average task completion
time of the agents on that server (as utilization is the server’s agent load divided by its
processing power). Furthermore, assuming no other operations are being performed
on a server, the utilization of a server only changes when its agent load changes i.e.
when an agent enters or leaves the server. Since the lifetime of complex tasks is
unknown, the selection of servers on which agents can fulfill their tasks is based on
the current utilization of suitable servers and not on their predicted utilization (after
the complex task has been run on them). This implies that the utilization of a server
on the arrival of a complex task is not actually affected, since the lifetime of the
corresponding complex task is not added as extra time to the server’s agent load,
resulting in an incorrect evaluation of a server’s utilization.

The algorithm runs on each server separately. On the arrival of the first agent on a
server, the algorithm sets a timer which after a predefined time calls a procedure
check_AvTaskComplTime. Initially the timer is set equal to the average task
completion time of agents on the corresponding server. The check_AvTaskComplTime
procedure monitors the transit of agents on a server. If no agent has left the server up
to the time where check_AvTaskComplTime has been initialized, it means that the
number of agents on that server has been either increased or remained unchanged.
This implies that the agents present on the server (or even the first agent that arrived
on the server) have not accomplished their task by the expected time i.e. the time
corresponding to the average task completion time of an agent. The average task
completion time of agents on a given server (and therefore its utilization) are updated
only after the departure of an agent from that server. Therefore, until an agent
accomplishes its task the utilization is unchanged. Provided that the agents require
more time to complete their task, the algorithm’s objective is to update the utilization
of that server based on the increase in the average task completion time of those
agents that have completed, and publish this information to the rest of the MAs. This
updated must be repeated after regular intervals. Once an agent leaves the server, the
lifetime of its task is used to update the average task completion time of agents on that
server, and calculate the utilization of the server. The timer of the algorithm which
activates the check_AvTaskCompl Time procedure is triggered in different time
intervals due to the change in the average task completion time of agents. It is stopped
when there are no agents left on the server.

5 Experimental Results

Experimental results on balancing the load of mobile agent tasks among the
information-servers is presented in this section. The top graph of figure 3 displays the
utilization of each of the five information-servers used in the SARA prototype during

 Mobile Agent-Based Service Provision in Distributed Data Archives 33

the launch of 200 agents. Agents consisted of simple tasks and the graph demonstrates
the even distribution of agent load among the servers.

The load balancing experiments were performed on a 100Mbit/s Fast Ethernet
network with six Sun Ultra 5 Workstations of a 270 MHz UltraSPARC-IIi 64-bit
processor running on Solaris 8, utilising the Voyager 4.5 agent platform from
Recursion Software. Of the available machines, five were used as information-servers
and one as a Web-server. Every information-server had a data repository maintained
by the Oracle DBMS, composed of replicated test-data. Each server had identical
computational capabilities.

Note that the utilization of a server in the SARA load balancing model does not
represent its actual CPU usage, but its agent load (or the expected time when the
server will become unloaded). Since the utilization of a server is updated after the
arrival of an agent from that server, small changes are expected to appear due to the
intervals of sampling values recorded.

The introduction of agents with complex tasks in the agent load resulted in higher
deviations of a server’s utilization. Complex tasks apart from the data gathering
procedure included the fusion of agent’s results against different filtering algorithm
on-site. The second graph of figure 3 illustrates the utilization of the information-
servers on which 15% of the agents launched had complex tasks.

Fig. 3. Utilisation of Information-servers on the execution of simple and mixed agent tasks

1

1
7

3
3

49 6
5

8
1

97

11
3

12
9

1
45

1
6

1

17
7

1
93

2
09

2
25

2
4

1

25
7

Server 1
Server 2

Server 3
Server 4

Server 50.01

0.1

1

10

100

1000

10000

U
til

is
at

io
n

time

1

21 41 61 81

10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

Server 1
Server 2
Server 3
Server 4
Server 5

0.01

0.1

1

10

100

1000

10000

100000

U
til

is
at

io
n

time

34 C. Georgousopoulos and O.F. Rana

The variations in utilization of each server are higher in comparison with the
previous graph, due to the arrival/departure of agents with complex tasks that require
more time to be processed. Though it can be observed that the utilization of each
server fluctuates at the same level as the other servers, where after a high drop in
utilization of a server caused by the completion of one or more complex task(s), there
is a rise to set the server’s utilization equivalent to the utilization of the other servers.

Since a server of which has a lower utilization can handle more tasks that with a
higher utilization, and the objective of load balancing is to evenly utilize the resources
of each server, more tasks are assigned to the least loaded servers. Therefore, the rise
on a server’s utilization results from the constant assignment of agents with either
simple or complex tasks to that server, increasing in that way its utilization until the
agent load in every server is balanced.

5.1 Adaptability of Model

In order to explore the efficiency of the adaptability algorithm, three different load
balancing schemes have been developed; labeled as LB scheme No.1, No.2 and No.3
in figures 4, 5, and 6. LB scheme No.1. LB scheme No.1 represents the default load
balancing scheme adopted in the SARA system. LB scheme No.2 is an alternative
version of scheme No.1 in which the lifetime of complex agent tasks is unknown, and
therefore not used the in calculations, and LB scheme No.3 is an alternative version of
scheme No.2 in which the adaptable algorithm is utilized for amending the server’s
utilisation due to the introduction of agent tasks with unknown lifetime in the servers.

The purpose of the experiments is to examine at what percentage LB scheme No.3
reaches the performance of LB scheme No.1; in other words, test the functionality of
the adaptability algorithm by systems within which the lifetime of complex tasks
cannot be estimated or predicted successfully. The performance of each load
balancing scheme on distributing 200 agent tasks among five information-servers,
according to the total time required by those agents to accomplish their tasks is
presented in figure 4. The experimental tests performed on each load balancing

Fig. 4. Total task time required by agents to complete their tasks

27
,7

97

27
,8

05

27
,8

02

33
,7

35
33

,8
15

34
,3

76

35
,4

13
35

,5
78

37
,8

25

36
,2

40

37
,0

05

39
,9

43

37
,2

50

38
,2

12

41
,4

77

39
,5

89
45

,5
02

51
,0

15

20,000

25,000

30,000

35,000

40,000

45,000

50,000

55,000

0% 5% 10% 15% 20% 25%

LB scheme No.1 LB scheme No.3 LB scheme No.2

To
ta

l t
as

k
tim

e
 (i

n
m

s)

complex agent tasks introduced

 Mobile Agent-Based Service Provision in Distributed Data Archives 35

scheme within the SARA system have been based on a variable introduction of
complex tasks to test the efficiency of the algorithm.

The lower the value of each bar in the graph of figure 4, the lower the time
required by the agents to complete their tasks in total, thereby resulting in better load
balancing. The value of each bar corresponds to the mean value sampled from the
conduction of four experiments on each of the three load balancing schemes for six
different variable introductions of complex tasks in agent load, resulting in the launch
of 14,000 mobile agents in total. As it would have been expected, LB scheme No.1
which is based on known or correctly predicted lifetime of agent tasks, disseminates
properly the agent load among the servers by evenly utilizing each server, and
therefore resulting on the fastest completion of agent tasks in comparison with the
other two LB schemes; where obviously when there are no complex tasks involved all
of the three LB schemes behave the same.

The difference in performance between LB scheme No.1 and LB scheme No.2 and
No.3 is expressed in figure 5. The chart compares LB scheme No.1 with LB schemes

Fig. 5. Efficiency between LB scheme No.2 and No.3

Fig. 6. Optimization of LB scheme No.2, based on the utilisation of the adaptability algorithm

0.23%
1.86%

0.46%

6.37%

2.11%

9.27%

2.51%

10.19%

14.9%

22.39%

0

10

20

30

0% 5% 10% 15% 20% 25%

LB scheme No.3 LB scheme No.2

complex agent tasks introduced

ef
fic

ie
nc

y

1.63%

5.94%
7.35% 7.87%

10.8%

0

10

20

30

0% 5% 10% 15% 20% 25%

complex agent tasks introduced

o
pt

im
is

a
tio

n

36 C. Georgousopoulos and O.F. Rana

No.2 and No.3, where the difference in performance between LB scheme No.2 and
No.3 is due to the utilization of the adaptability algorithm is depicted in figure 6.

Figure 6 reveals the optimisation in performance arising from the use of the
adaptability algorithm. From figures 4, 5 and 6 it can be inferred that the higher the
introduction of complex tasks of unknown lifetime in a system (from 5% to 25%), the
better the load balancing by the use of the adaptability algorithm – with an
improvement of between 1.63% to 10.8%.

6 Conclusion

The design of a load balancing model depends on the properties and functional needs
of the agent-based system. The proposed model may be employed by other systems
utilizing active archives, in which the lifetime of complex tasks cannot be estimated
or tend to be erroneous. System developers can take advantage of the adaptability of
the model to cater for variable system workloads.

References

[1] A. Chavez, A. Moukas, P. Maes, “Challenger: A multi-agent system for distributed
resource allocation.”, in proceedings of the 1st Int. Conference on Autonomous Agents,
ACM Press, Marina del Ray, CA, USA, 1997.

[2] A. Keren, A. Barak, “Adaptive placement of parallel java agents in a scalable computing
cluster”, in proceedings of the Workshop on Java for High Performance Network
Computing, ACM Press, Palo Alto, CA, USA, 1998.

[3] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, W.S. Stornetta, “Spawn: a
distributed computational economy”, transactions on Software Engineering, 18(2):103
117, 1992.

[4] C. Georgousopoulos, O.F. Rana, “Combining state and model-based approaches for
mobile agent load balancing”, in proceedings of Symp. on Applied Computing (SAC03),
ACM press, ISBN 1-58113-624-2, held in Melbourne, Florida, USA, 2003, pp. 878-885.

[5] C. Georgousopoulos, O.F. Rana, A. Karageorgos, “Supporting FIPA interoperability for
legacy multi-agent systems”, in proceedings of 4th Agent Oriented Software Engineering
(AOSE) workshop of AAMAS’03 conference, Springer-Verlag LNCS 2004, ISBN
3-540-20826-7, held in Melbourne, Australia, Sydney, 2003, pp. 167-184.

[6] C.Z. Xu, B. Wims, “Traveler: a mobile agent infrastructure for wide area parallel
computing”, in proceedings of the IEEE Joint Sump. of 1st Int. Symp. on Agent Systems
and Applications (ASA'99) and 3rd Int. Symp. on Mobile Agents (MA'99), Palm Springs,
1999.

[7] D.L., Eager, E.D. Lazowska, J. Zahorjan, “Adaptive load sharing in homogeneous
distributed systems”, IEEE Trans. on Software Engineering,vol SE-12,1986,pp.662-675.

[8] http://www.cs.cf.ac.uk/Digital-Library/, last viewed 2003
[9] J. Gomoluch, M. Schroeder, “Information agents on the move: A survey on load-

balancing with mobile agents”, in Software Focus, vol. 2, no. 2, Wiley, 2001.
[10] M. Backschat, A. Pfaffinger, C. Zenger, “Economic-based dynamic load distribution in

large workstation networks”, in proceedings of the 2nd Int. Euro-Par Conference, volume
2, Lyon, France, 1996, pp. 631-634.

 Mobile Agent-Based Service Provision in Distributed Data Archives 37

[11] OCEAN - Open Computation Exchange & Auctioning (or Arbitration) Network,
http://www.cise.ufl.edu/~mpf/ocea n/index.htm, last visited 2004.

[12] O.F. Rana, Y. Yang, C. Georgousopoulos, D.W. Walker, R.D. Williams, “Agent based
data analysis for the SARA Digital Library”, in proceedings of the Int. workshop on
advanced data storage/management for high performance computing, ISSN 1362-0223,
held at CLRC-Daresbury laboratory, Warrington, U.K., 2000, pp. 211-210.

[13] R.D. Williams, B. Sears, “A High-Performance Active Digital Library”, Parallel
Computing, special issue on Metacomputing, 1998.

[14] R. Ghanea-Hercock, J.C. Collis, D.T. Ndumu, “Co-operating mobile agents for
distributed parallel processing”, in proceedings of the 3rd Int. Conference on Autonomous
Agents, ACM press, Mineapolis, USA, 1999.

[15] T.W. Malone, R.E. Fikes, K.R. Grant, M.T. Howard, “Enterprise: A market-like Task
Scheduler for Distributed Computing Environments”, in: The Ecology of Computation.
Ed. Huberman, B. A. Elsevier, Holland, 1988.

[16] W. Obeloeer, C. Grewe, “Load management with mobile agents”, in proceedings of the
24th EUROMICRO Conference, IEEE, 1998, pp. 1005-1012.

[17] Y. Yang, O.F. Rana, D.W. Walker, C. Georgousopoulos, G. Aloisio, R.D. Williams,
”Agent based data management in Digital Libraries Remote-Sensing Archive”, published
in Parallel Computing Journal, Elsevier Science, vol. 28, issue 5, 2002, pp. 773-792.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 38 – 49, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Proxy Service for the xrootd Data Server

Andrew Hanushevsky and Heinz Stockinger

Stanford Linear Accelerator Center (SLAC), Stanford University,
2575 Sand Hill Road, Menlo Park, CA-94025, USA

{abh, Heinz}@slac.stanford.edu

Abstract. In data intensive sciences like High Energy Physics, large amounts of
data are typically distributed and/or replicated to several sites. Although there
exist various ways to store and access this data within a Grid environment, site
security policies often prohibit end user access to remote sites. These limita-
tions are typically overcome using a proxy service that requires limited network
connections to and from remote sites. We present a novel proxy server for the
xrootd data server that provides access to data stored in an object-oriented data
store (typically in ROOT format). Our proxy service operates in a structured
peer-to-peer environment and allows for fault tolerant and reliable access to re-
mote data.

1 Introduction

In a Data Grid environment security is one of the main issues. On the one hand, data
needs to be securely stored in specific data stores to guarantee local site security as
well as data integrity. On the other hand, network access imposes additional security
concerns that might not be directly addressed by the storage system. Grid middleware,
file servers as well as database specific client-server or peer-to-peer applications need
to deal with network security. One of the most commonly applied solutions is to set
up firewalls and restrict the number of in- and/or outbound network connections.

Often, client applications in a Data Grid are executed in an Internet Free Zone (IFZ)
or run on machines that do not allow for outgoing network connections. However,
due to the nature of a Data Grid, data is distributed and/or replicated to several data
stores outside the LAN where the client application needs to execute. In addition, a
client application may need to access non-local data and therefore requires access to
remote sites without compromising the local security infrastructure. One way to over-
come this issue is to apply a proxy server that relays client requests to a remote ma-
chine outside the local firewall.

A proxy server adds an additional point for retrieving and temporarily caching data,
and thus potentially means a slight overhead, appearing as increased latency, in data
transfer. However, this overhead is often accepted in cases where security concerns
are more important than very high speed data access.

One of the most commonly used data stores for data intensive sciences in the High
Energy Physics community is the ROOT framework [9]. It allows for data storage,
retrieval, physics specific data analysis, etc. Remote data access is usually done via a
ROOT data server called rootd (ROOT daemon). Recently, this data server has been

 A Proxy Service for the xrootd Data Server 39

enhanced by xrootd [6], an extended, high performance data server. Xrootd was partly
developed to access ROOT files, but it can be considered as a general data server that
provides POSIX like file access to any kind of data. Although xrootd is a very reliable
and secure server, the problem of outbound network connectivity still needs to be
tackled.

In this paper, we describe another extension to the xrootd data server system where
proxy servers take care of local client requests and then serve the data from a remote
site if required. In this way, application clients only need to have network connec-
tivity to the local proxy server(s) and access to remote data is guaranteed.

2 The Problem Domain

Several data intensive sciences like High Energy Physics require access to remote
data. However, site administrators do not always allow client applications to directly
access remote files because of network security issues. This is particularly true for
Data Grids where client applications are executed on a worker node that is in an Inter-
net free zone.

Several Grid data management solutions in major Grid projects do not directly ad-
dress this problem, and mainly deal with entire file transfers [15,1] rather than POSIX
like read/write file access. Given that a majority of physics data is stored in object
stores such as ROOT [9], there is a clear need for a high level file access in order to
analyze data. Due to the distribution of both, users and data (potentially all over the
world), remote access is of major importance. In addition, partial and random file
access is needed in order to reduce network traffic and increase end user access per-
formance.

Physics experiments such as BaBar [12] at SLAC or Large Hadron Collider ex-
periments at CERN generate large quantities of data that are stored both on disks and
on tertiary storage devices that include low-latency tape and hierarchical storage sys-
tems [5]. Although our proposed system takes care of interaction with such systems,
we limit our discussion to disks only.

If no direct access to remote data is allowed, proxies are one way to allow for read-
ing remote data. This implies that a proxy server acts on behalf of a user, contacts a
remote data server, reads the requested data and sends the result back to the client.
Proxies are very common in the Internet and typically used by web servers. In a Data
Grid environment where data security is of major importance, proxies can be used for
all possible services that would need data or information from a remote site.

3 General Overview of xrootd

3.1 The Basics of the Data Server

The basic purpose of the xrootd data server is to provide access to files stored on
secondary (disk) or tertiary storage devices (tape or hierarchical storage devices). The
files do not have to be organized in special formats since the data server provides file
I/O similar to a POSIX file system interface. In particular, files that reside in a certain
file system are served by the xrootd data server. Using the xrootd, end users that want

40 A. Hanushevsky and H. Stockinger

to access files in a certain domain need to connect to the server which then provides
read or write access to a client. Client-sever communication is done via the xrootd
protocol [6].

A typical example for such a client-server communication is depicted in Figure 1.
The xrootd server runs on a certain machine and serves all files that are located in a
specific directory: in our example it is /data. Assume a remote user on the same local
area network but without direct access to the disk of the xrootd server. This user now
wants to open the file /data/file1 (using a POSIX like open command), get the file size
(using stat) and then read 1,000 bytes of that file starting from offset 3,000 (using the
read call). In order to achieve all this, a client connects to the server using the xrootd
protocol via respective client libraries. All previously mentioned calls are then sent to
the server which in turn reads the file from disk and sends the requested bytes back to
the client.

Fig. 1. Basic client-server interaction with an xrootd server

The xrootd request/response protocol contains more file system related calls such as
chmod, getfile, putfile and write. For more details we refer the reader to [6].

3.2 Design Principles

xrootd is a high-performance data server where several hundred user requests can be
served in parallel, depending on the hardware configuration. However, a single data
server is often not resilient to many kinds of server, network or hardware failures.
Therefore, the xrootd system is designed to allow for several data servers where client
requests get automatically redirected to a different data server for load balancing and
fault tolerance reasons. In other words, multiple data servers located on multiple ma-
chines can serve client requests potentially for the same file. Based on the load of a
single data server and the location of a requested file, a client request gets redirected
to one of the servers that is potentially able to serve the request with minimal latency.

Given that the xrootd system is not a single client-server system but requires servers
to be coordinated, we can distinguish the following main interactions in the system.

• On the one hand, the system needs to find out where data is located and which
server is least loaded to provide the requested data. We refer to this as control flow.
Part of the control flow can be compared to replica lookups with redirection as we
reported in [12].

• Once a suitable data server is selected, the actual data needs to be transferred
between the data server and the client. We call this the data flow.

The distinction between control and data flow is rather common and is found in
many peer-to-peer file sharing systems (BitTorrent, GnuTella), distributed file sys-
tems (Google, Lustre, PFS) and data transfer protocols such as FTP. One of the main

 A Proxy Service for the xrootd Data Server 41

design principles of the xrootd is a separation of data flow and control flow when
serving data to a client.

In order to allow for separation of concerns, data flow is achieved by data servers
(i.e. the xrootd discussed in Section 3.1) whereas the control flow is done by servers
that are dedicated to that purpose. Since the main purpose of such servers is to locate
data and balance the load they are called open load balancers (olb) in this context.
Simply put, data severs and load balancers work together to serve client requests. An
end user only needs to know about data servers and their locations in order to retrieve
data. Therefore, whenever we talk about the xrootd system in this paper, we refer to
the entire system that consists of data servers and load balancers.

3.3 Basic Architecture

The overall architecture of the xrootd system consists of several components that are
implemented in either the data server or the load balancer. The orchestration and
interaction of these main servers are implemented as a structured peer-to-peer sys-
tem, where data servers and load balancers can have different roles to achieve the
overall goal to serve data. Before we go into the details of the server interaction, we
describe the different roles that servers can have, as depicted in Figure 2.

Fig. 2. Interaction in the xrootd structured peer-to-peer system. It shows the clear distinction
between control and data flow as well as the different roles

A data server (xrootd) can act either as a pure data server or as a redirector:

• A pure data server knows the xrootd protocol and can only serve data located on a
certain file system. Its task is to handle a client request for data and directly transfer
data to the client. On the bottom of Figure 2, we have three pure data servers named
xrootd, each potentially located on a different machine in the same local area
network.

• A redirector knows the xrootd protocol and accepts client calls for file access but
rather than serving data directly, it interacts with load balancers in order to find a
suitable data server that can serve the client request.

The interaction of load balancers, also referred to as the control network, consists
of identifying where data is located and which of the pure data servers (xrootds) will

42 A. Hanushevsky and H. Stockinger

serve data to the client. In order to structure the interaction in the control network, a
load balancer (olb), can have one of the following roles: manager or server.

• An olb-manager (also referred to as manager), has the task to accept data location
requests from an xrootd redirector. Next, the manager needs to interact with olb-
servers to check the current load and the availability of files.

• An olb-server (also referred to as server), subscribes to an olb-manager and thus is
committed to provide data location information to the manager. Once a data server
is located, the redirector redirects the client to that server.

Note the difference between olb-server and data server. Whereas the olb-server
only provides the location information (control flow), the xrootd data server really
serves the actual data (data flow). In addition, the interaction between olb-managers
and olb-servers is done using the olb protocol rather than the xrootd protocol.

We call this architecture structured peer-to-peer because at any instance has a spe-
cific role. This provides critical administrative predictability to the system. On the
other hand, it is peer-to-peer since servers act as clients under certain conditions.

3.4 Request Flow

We now extend our example from Section 3.1 in order to explain the request flow
(control and data flow) for a typical read request.

1. The end user client contacts an xrootd server that, typically unknown to the client,
acts as a redirector.

2. The redirector asks its associated olb-manager, which may or may not be co-
located, for the location of the file.

3. The olb-manager interacts with all its olb-servers that have subscribed to the control
network. Each olb-server reports if it has an instance of the requested file.

4. The olb-manager collects all responses. If a suitable data server has been reported,
the olb-manager returns the hostname of the data server to the redirector.

5. The redirector sends the hostname back to the client, indicating that the client
request is redirected to a new xrootd.

6. The client contacts the xrootd server indicated by the redirection response of the
redirector. If the current xrootd is configured to be a pure data server, the requested
bytes for the read request are sent back to the client. Otherwise, the process is
repeated until the client is redirected to a pure data server.

The design and implementation of the system allow that olbs and xrootds can be
used with other systems like Objectivity [18] and thus allow for a wide range of inter-
operability. The current servers can be re-used as long as they speak either the xrootd
or the olb protocol.

3.5 Data Security

Up to now, we mainly discussed network security issues related to firewalls and net-
work connections. Within a site, secure access to data is fundamental, in particular for
the interaction with the xrootd. The xrootd allows for a secure access to data via
authentication of clients as well as authorization policies on the server side. The au-
thorization is handled via ACL like access permissions that are stored in a separate

 A Proxy Service for the xrootd Data Server 43

configuration file. By means of a generic security interface, several security protocol
implementations can be used, i.e. dynamically loaded at startup time of the xrootd
server.

The basic request authentication is done when the client contacts the server to open
a file. The xrootd protocol internally requires a login as well as an authentication
procedure for this purpose. The flexible security interface allows for several authenti-
cation steps, based on the used security protocol. Currently, the system has implemen-
tations of Kerberos security, but is also extensible to the more commonly used Grid
Security Infrastructure (GSI).

4 The Proxy Service

The architecture presented in Section 3 allows for a flexible system of data and load
balancing servers distributed to several locations within a local area network or spread
around in a Grid environment. The system also allows for access to replicated data in
several locations. However, in all cases, a redirection request to a new data server
requires that a client (used by an end user application) has external network connec-
tivity to a remote data server. In addition, the load balancer control network requires
potential outbound network connectivity if load balancers of remote sites (olb-
servers) have subscribed to the local load balancer (olb-manager), i.e. olb-manager
and olb-server reside in different sites. In the following section we introduce a proxy
service that extends the presented architecture.

4.1 Architectural Overview

The main aim of the proxy service is to act on behalf of a client (in this case also on
behalf of the end user). The proxy service retrieves the requested data from a remote
data server and sends it back to the client. The basic concept is rather straight forward.
However, the challenge is to integrate the proxy service with the existing peer-to-peer
system of data servers and load balancers outlined above.

Basically, the xrootd data server is extended to contact a remote xrootd data server.
Since the original data server acts as a client to the remote data server, it needs to use
the xrootd protocol like any other client. Therefore, in our peer-to-peer system we
allow for an additional interaction between a pair of xrootd servers to exchange data.

We recall that the xrootd acting as a pure data server only knows about its local
files, and it does not know about any other hosts. Only a redirector knows about an
olb-manager and can contact it in order to obtain the location of a file served by a
pure data server1. Given this, we extend the functionality of a redirector such that an
xrootd can serve as a proxy. In detail, a proxy-capable xrootd (also referred to as
proxy server) first needs to ask its corresponding olb-manager for the location of a
file. This lookup is equivalent to the lookup for a potential redirection. However,
rather than returning a redirection response to the client, the proxy-capable xrootd
directly connects to the remote data server and relays the received client request to the

1 We restrict our discussion to this simple arrangement. In fact, the xrootd may redirect a client

to a virtual data server, sometimes called aggregator, that will in-turn redirect a client to a
pure data server. This scenario is outside the scope of this paper.

44 A. Hanushevsky and H. Stockinger

remote server, acting on behalf of the client. Once the proxy server has received the
requested data from the remote server, it can send it back to the client. This simplified
information flow is depicted in Figure 3. Note that although the proxy has now the
feature of a redirector in the sense that it can ask the control network for the location
of a remote file, the proxy is also similar to a pure data server since it also serves data
to the user rather than redirecting the client request.

Fig. 3. Simplified interaction between client, proxy and remote data server

The minimal peer-to-peer topology presented in Figure 3 allows for shielding the
client completely from the Internet in case the remote data server is located in a re-
mote site only reachable via a wide area network connection. Therefore, a client has
potential access to data distributed all over the globe but only needs to access a local
proxy server that then retrieves the requested data.

Since both the olb-manager as well as the proxy server requires outbound network
connectivity to the Internet, only two network ports have to be opened to the “out-
side” world: the port where the olb-manager talks in order to retrieve data location
information, as well as the port where the proxy server sends its data requests to a
remote data server. The client itself, typically located in the Internet Free Zone (IFZ),
only needs to have access to the proxy server and does not require any further out-
bound network connections.

The described architecture so far only requires a modification/extension for xrootd
data servers whereas load balancers are unchanged. In other words, no modification to
the code of the olb was required. This is fine for a simple scenario with a single proxy
server. However, if there is a conventional redirector in the local area network, a po-
tential client request might still get redirected to the remote data server since the con-
trol network system does not distinguish between servers within the local domain and
remote domain when selecting file locations. This apparent problem is readily solv-
able by a simple configuration options. We can impose the configurable rule that local
data servers and remote data servers may not subscribe to the same olb-manager.

4.2 Configuration/Deployment Options

Both, xrootds and olbs are configurable and allow for several different deployment
scenarios. For simplicity, we previously mentioned only the minimal number of serv-
ers in the structured peer-to-peer system to explain the basic interaction. However, in

 A Proxy Service for the xrootd Data Server 45

a real deployment environment where thousands of users and potentially millions of
files are distributed to several sites in a Grid environment, a single proxy and/or a
single data server per site is not sufficient. One can also have several redirectors or
several proxies per site. Furthermore, while we always coupled xrootds with olbs
(manager or server) on the same machine; one can use any number of xrootds and
olbs on any number of machines. Further, as mentioned previously, olbs can act as
aggregators for other olbs. Thus, one olb might actually report file information for
several xrootd data servers.

The xrootd data server can either serve data directly from a disk location or contact
a mass storage system such as HPSS [5] to stage the file. Once the file is staged, the
xrootd can serve it to the client. Since a data server acts as a proxy, we still provide
this configurable option that files can also be staged. In addition, a proxy first tries to
find a file on a potential local disk and only if it fails, it requests the file from remote
data server. In this way, potential transfer latencies are reduced if the file can be
served locally. This also allows administrators to configure pure data servers to act as
proxies as a matter of last resort.

4.3 Implementation

The entire xrootd system has been implemented in C++ and ported to several plat-
forms (Sun Solaris 8, 9, Linux RedHat 7.x (currently the most commonly used Linux
platform in HEP), Linux RedHat Enterprise edition 3.0) using native Solaris, GNU,
and Intel compilers.

The standard xrootd system as presented in Section 3 has been fully implemented
and is used in production in the BaBar experiment. Although the data servers are
implemented using the xrootd protocol, the actual servers allow for other protocols by
dynamically loading a protocol implementation compatible with a client’s first inter-
action with the server.

For the proxy server, the most important xrootd methods have been implemented,
i.e. login, open, read, stat, auth etc. in a synchronous, blocking environment. The
xrootd dynamically loads a proxy object, which implements the xrootd client code,
when the olb-manager returns the hostname and port information of a remote data
server.

5 Experimental Results

The testbed we used for our experimental results corresponds to a typical Data Grid
setup where an end-user client application gets executed on a worker node of a com-
puting element [15]. For simplicity, we only assume one worker node that is behind a
firewall and requires access to local data on the same local area network as well as
remote data accessible via a proxy server. We used four different sites as indicated
below. The client was deployed at SLAC with servers at each of the four sites. The
numbers in brackets correspond to the Round Trip Time (RTT) of TCP packets from
SLAC to the given site:

• SLAC: Menlo Park, California (RTT local) CERN: Geneva, Switzerland(RTT 165ms)
• Caltech: Pasadena, California (RTT 13ms) Pisa: Pisa, Italy (RTT:170ms)

46 A. Hanushevsky and H. Stockinger

Note that both links between SLAC and CERN as well as SLAC and Pisa represent
high-latency, wide area network links. We used the following hardware for the per-
formance tests of the xrootd system where each machine had a 100Mbps Fast
Ethernet card:

• Client (SLAC): Sun Fire V.240, 1 GHz, 2 GB RAM
• Proxy (SLAC): Sun Fire V.240, 1 GHz, 2 GB RAM
• Server (SLAC): Dual Pentium III, 1.4 GHz, 2 GB RAM, 512 KB cache
• Server (Caltech): Intel Xeon, 4 CPUs, 2.8 GHz, 1GB RAM, 512KB cache,
• Server (CERN): Dual Intel Pentium III, 800 MHz, 256 KB cache, 512 MB RAM
• Server (Pisa): Intel Xeon, 1.7 GHz, 1 GB RAM, 512 KB cache

All Intel-based machines ran either RedHat Linux 7.2 or 7.3 with gcc 2.95.2, 2.95.3
or gcc 3.2 whereas the Sun based machines used Sun Solaris 9 and the native Sun
compiler. All server machines above ran both the xrootd data server as well as a cor-
responding olb-server. The olb-servers were all subscribed to the olb-manager on the
Proxy machine (Sun Fire). In addition, the proxy machine also hosted the xrootd
proxy which was the main contact (proxy) for the client application residing on a
second Sun Fire machine on the same LAN. This corresponds to the scenario depicted
in Figure 3.

In order to measure the performance of the newly introduced proxy server for read
requests, we first isolate a few latency parameters. Note that the system has a certain
start-up time because all peers need to talk to each other. Once an olb-server sub-
scribes to an olb-manager, a certain interaction takes places where the manager col-
lects information about the server. We call this the start-up latency. Once this is done,
the manager knows about all its servers and which name spaces they are serving, i.e.
which file path on disk is addressed. Next, each time a client requests a file for the
first time (i.e. an open request is sent to the xrootd proxy), the olb-manager checks for
the file location at the site of the olb-server. We call this the look-up latency: this time
is a configurable parameter and is set to 5 seconds by default at the server startup. The
olb-manager caches all the file locations it has looked up and keeps them for a default
of 8 hours in its local cache.

We are mainly interested in the performance of the proxy server and the potential
overhead it implies as compared to a potential direct data transfer between the client
and a remote server. We therefore compare the time of a read request on an open file.
In the first experiment, the client requested to read all bytes of a 9.5 MB file issuing a
read starting from offset 0. The results are depicted in Figure 4. ”proxy” corresponds
to reading data via a proxy and “direct access” corresponds to reading the file directly
from the remote data server where the file is located. In both cases, the client was
located at SLAC.

From the results in Figure 4 we see that for high- latency links like California (SLAC)
to Europe (CERN, Pisa), the proxy server did not impose any additional overhead
whereas for fast links between SLAC and Caltech, a small overhead can be seen. Note
the logarithmic scale on the time axis. This overhead is also true for a local read.

We compared the read time to the transfer time of the same file via scp as well as
bbcp [17] in order to see how much we can potentially improve the access time over
the wide area network. Transferring the same 9.5 MB with scp (single stream, no
window size tuning) between SLAC and CERN resulted in a transfer rate of about
370KB/s. The transfer rate of xrootd is ~277 KB/s.

 A Proxy Service for the xrootd Data Server 47

Read entire 9.5 MB without tuning

1

10

100

CERN Pisa Caltech SLAC

T
im

e
in

 s
ec

o
n

ds
proxy

direct access

Fig. 4. Read 9.5MB file via the proxy server from a remote site compared to read the file di-
rectly from the remote data server

Next, we studied the effects of tuning the network transfer with bbcp and experi-
mented with different window sizes and various parallel streams. We reached the
optimum using 20 parallel streams and a window size of 1 MB. We gained an effec-
tive transfer rate of 1128 KB/s, which also includes the security handshake. The raw
transfer rate, which corresponded to only reading the file, was 5232 KB/s. Conse-
quently, we see that on the WAN link we needed to optimize the transfer rate by win-
dow size tuning and the usage of parallel streams.

In our current implementation of xrootd we only allow for window size tuning and
thus all subsequent tests were run with a TCP window size of 1 MB. We therefore
redid the pervious test and gained a transfer rate of ~355KB/s for the SLAC-CERN
link, i.e. almost equivalent to scp. There is clearly more improvement possible once
we apply parallel stream transfer as used in bbcp.

In the next test depicted in Figure 5 we tested partial file reads. We used the same
9.5MB file but only read 100 KB starting from offset 50,000. We observe that the raw
transfer rate is higher with tuned window sizes.

Read 100,000 bytes from 9.5MB file starting at
offset 50,000

1

10

100

1000

10000

CERN Pisa Caltech SLAC

T
im

e
in

 m
ill

i s
ec

on
d
s

proxy

direct access

Fig. 5. Read parts of a file with tuned TCP window set to 1 MB

48 A. Hanushevsky and H. Stockinger

6 Related Work

There has been considerable work done on proxy servers for web-based content with
[7][8] spanning a decade of research. Proxies now exist for practically all protocols in
many contexts; from protocol conversion [14] to dealing with firewall issues [16].
Considerable work in caching methodologies in distributed file systems, peripherally
related to proxy services, represents a closely related area [2][3][10][11]. Perhaps the
closest work in terms of what xrootd tries to do, though in many different ways, is the
Google File System [4]. However, we know of no on-going work that uses a proxy
service, let alone a structured network of control and data proxies, to address a typical
quandary that develops in peer-to-peer file services: what happens when a file that
was expected to be found in the local domain can only be found in a remote domain?
While clients in unstructured, non-fire-walled, P2P systems can easily solve this prob-
lem by simply getting the file, structured systems are rarely so lucky. We feel that our
approach, while not theoretically new, is technically novel and represents a signifi-
cantly effective solution to a relatively recent problem in data management.

7 Conclusions and Future Work

We have presented a proxy server for the xrootd system that can be used to address
network security issues related to in- and outbound network connections. This is an
important solution to data intensive science applications like High Energy Physics.

Our current server only imposes a small, expected overhead for read access over
wide area networks in a Data Grid. In order to reduce the overhead further, we might
also add parallel streams for the actual data transfer. There is also the future potential
to call external file transfer protocols like bbcp or GridFTP in case nearly the entire
file needs to be read by the client. Other plans are to implement more proxy function-
alities such as write access or to allow for asynchronous communication with the
server.

Acknowledgements

We thank Flavia Donno and Kurt Stockinger for useful comments on the paper. This
work was supported by Stanford Linear Accelerator Center and Stanford University
under contract DE-AC03-76-SF00515 with the US Department of Energy.

References

1. B. Allcock et al. Secure, Efficient Data Transport and Replica Management for High-
Performance Data-Intensive Computing. IEEE Mass Storage Conf., San Diego, Apr. 2001.

2. M. Blaze, Caching in Large Scale Distributed File Systems, PhD thesis, Princeton Univer-
sity, Nov. 1992.

3. J. Howard, et. al., Scale and performance in a distributed file system. ACM Transactions in
Computer Systems, 6(1):231-244, 1988.

 A Proxy Service for the xrootd Data Server 49

4. S. Ghemawat, H. Gobioff, S. Leung, File and storage systems: The Google File System,
19th ACM Symposium on Operating Systems Principles, Bolton Landing, Oct. 2003.

5. A. Hanushevsky, M. Nowak. Pursuit of a Scalable High Performance Multi-Petabyte Da-
tabase. IEEE Symposium on Mass Storage Systems, San Diego, Mar. 1999.

6. A. Hanushevsky. eXtended ROOT Daemon (xrootd), http://www.slac.stanford.edu/xrootd
7. A. Luotonen and K. Altis, World-wide web proxies, Computer Networks and ISDN sys-

tems, Int. Conference on the World-Wide Web, Elsevier Science BV, 1994.
8. V. S. Pai, L. Wang, et. al., The dark side of the Web: an open proxy's view, ACM

SIGCOMM Computer Communication Review, 34(1): 57-62, Jan. 2004.
9. ROOT Framework, http://root.cern.ch

10. M. Satyanarayanan, The evolution of Coda, ACM Trans. on Computer Systems, 20(2):85–
124, May 2002.

11. F. Schmuck, R. Haskin, GPFS A Shared-Disk File System for Large Computing Clusters.
Int.Conf. on File and Storage Technologies (FAST), USENIX, Monterey, Jan. 2002.

12. H. Stockinger, A. Hanushevsky. HTTP Redirection for Replica Catalogue Lookups in
Data Grids. ACM Symposium on Applied Computing, Madrid, Mar. 2002.

13. H. Stockinger, A. Samar, S. Muzaffar, F. Donno. Grid Data Mirroring Package (GDMP).
Scientific Programming Journal - Special Issue: Grid Computing, 10(2):121-134, 2002.

14. http://de.samba.org/samba/samba.html
15. http://www.edg.org
16. http://www.ftpproxy.org/
17. http://www-iepm.slac.stanford.edu/monitoring/bulk/bbcp.html
18. http://www.objectivity.com

A Flexible Two-Level I/O Architecture for Grids

Alberto Sánchez, Marı́a S. Pérez, Vı́ctor Robles, José M. Peña, and Pilar Herrero

Computer Science School,
Universidad Politécnica Madrid,

Madrid, Spain
{ascampos, mperez, jmpena, vrobles, pherrero}@fi.upm.es

Abstract. One of the major advantages of Grid Computing (GC) technology is
the use of geographically distributed resources. Nevertheless, just like any kind
of systems, GC environments have a great problem: I/O system is the bottleneck
of the whole system. In order to obtain a better performance, it is necessary and
advisable to improve the data access. This problem could be solved by introducing
a parallel data access to grid resources.

Since GC consists of many resources and some of them are clusters, it would
be possible to exploit the parallelism among the different nodes of each cluster.
We propose to use two levels of parallelism in a Grid environment to improve
the data access and therefore the whole system performance. The low level will
be represented by the nodes of each cluster, and the high level will include all
the clusters. This paper shows a new architecture for grids, which is based on the
parallel file system MAPFS, designed for high performance clusters.

Keywords: Grid Computing (GC), Grid Services (GS), parallel I/O systems, Grid
Architecture.

1 Introduction

A Grid system is defined by Foster in [Fos02] as coordinates resources that are not
controlled by a centralized entity, by using standard, open, general-purpose protocols
and interfaces to deliver nontrivial qualities of services. If we extend this definition,
a Grid environment could be understood as the result of the computing and storage
resources offered by all elements which make up the grid. We must try to get the best
performance in any kind of access to any grid element or the whole environment.

The system performance can decrease, mainly due to the underlying I/O system.
While the process capacity has been duplicated each 18 months, according to the Moore
law, the data access has not been correlated with this increment. Thus, it is critical to
improve the I/O system to enhance the whole system performance.

A proposed solution to improve the I/O system is accessing data in a parallel way.
Different approaches have been defined within the field of parallel file systems, such as
PVFS [CLIRT00] or MAPFS [PCG+03].

MAPFS (Multi Agent Parallel File System) has been developed at the Universidad
Politécnica de Madrid in 2003 [DlSPH03]. Since MAPFS uses an agents paradigm -
which has been designed for Distributed Artificial Intelligence (DAI) systems- to access

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 50–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Flexible Two-Level I/O Architecture for Grids 51

data in a parallel way, MAPFS could be considerated as an innovative approach to I/O
access in I/O systems.

The main contribution of MAPFS is the conceptual use of agents to provide ap-
plications with new properties, with the aim of increasing their adaptation to dynamic
and complex environments. MAPFS is based on a multi-agent architecture that offers
features such as data acquisition, caching, prefetching and use of hints.

MAPFS can be adapted to complex environments. As a proof of that we have adapted
MAPFS to a Grid environment, having therefore what we have called MAPFS-Grid
[PCG+04].

This paper pretends to define the architecture which allows applications to get two
levels of parallelism in MAPFS-Grid: intercluster and intracluster. This requires a flexible
architecture, which exploits both levels, with the aim of improving the whole system.

The remainder of this paper is organised as follows: Section 2 defines the main
concepts of the Grid technology related to our work, as well as the GC trends. Section
3 describes our proposal, which is based on the trend shown below. Finally, Section 4
explains the main conclusions and outline the ongoing and future work.

2 Current Grid Technology

Nowadays, the Grid community is changing its directions towards a services model, as is
described in [FKNT02]. The new architecture OGSA (Open Grid Services Architecture),
defined by the organization that standardizes the Grid technology (GGF (Global Grid
Forum))[GGF], introduces an abstract view of the new trend of Grid environments.
OGSA provides support by the creation, maintenance and lifecycle of services offered
by the different VOs (Virtual Organizations). A Virtual Organization can be defined as
a set of persons, users, individuals or institutions that share the same access policies
[FKT01].

A new trend tries to fuse Web Services and services defined by OGSA services to
get what is known as Grid Services (GS) in a single development line. The GGF and
the organization in charge of Web Services, W3C (World Wide Web Consortium), are
making great efforts to make possible this union. It is expected that GS will be included
in next version 1.2 of WSDL (Web Services Description Language).

The Grid Services Architecture defined by OGSA is implemented in the version 3
of Globus Toolkit (GT3) (see Figure 1). It has the following levels:

– High level services. There are no GT3 Services that are based in the GT3 architecture.
– GT3 Data Services. They provide both data and replica management.
– GT3 Base Services. They supply the jobs management and a reliable file transfer.

In addition, they contain Monitoring and Discovery Services [MDS], called Index
Services (IS), which provide a way to produce and query service data, mainly used
in discovery operations.

– GT3 Security Services. They give basic access control to the grid by means of Grid
Security Infrastructure (GSI) [FKTT98]. If fine-grained access policies are required,
the Community Authorization Service (CAS)[PWF+02] can be used.

52 A. Sánchez et al.

Fig. 1. GT3 Architecture

– GT3 Core Services. They provide the basic features to distinguish Grid and Web
Services, like factories, notifications and lifetime management. We analyse in depth
these differences below.

The use of GS makes easier the access to the resources associated to a specific Virtual
Organization. Thus, GS pretend to be the front door of the VO resources, hiding how
these resources are internally managed.

Unlike Web Services, GS are stateful, allowing grids to store internal information
corresponding to very complex operations. Grid environments are built to run very
complex applications with a large lifetime and that usually execute complex operations.
In case of failure, it is very important to have internal results for recovering the operation
without restarting it. This is the main reason why GS are stateful services.

Moreover, GS can be characterized by the following features:

– They support event subscription and notification.
– GS are asocciated to a lifetime.
– Several instances of a service can be created.

As we can see in Figure 2, GS are similar to factories, since it is possible to cre-
ate different instances of the same service. Each instance has its own state and clients
can connect to the instance in which they are interested to share information and run
jobs.

As we could see above, GS are the front doors to the use of resources. It could happen
that several GS having the same interface were different. This can be due to:

– They use different resources.
– They have different implementations.
– They have different internal structures.

A Flexible Two-Level I/O Architecture for Grids 53

Fig. 2. Grid Service factory

Fig. 3. Service Data Elements

Since many GS have the same functionality but different performance, the exis-
tence of IS is essential for making possible the search of the most suitable GS amongst
registered GS based on the application requirements.

This selection is not trivial. In fact, the existence of Service Data, collecting structured
information about GS, makes this selection much easier. For this purpose, each GS
instance has its own sort of associated information, called Service Data Set, which can
contain zero or more SDE (Service Data Elements) of different types. Figure 3 shows
how a broker selects the most suitable GS that meets the applications requirements, using
the Service Data associated to such service.

Since development started on OGSI, the Web Services world has evolved signif-
icantly. Specifically, a number of new specifications and use patterns have emerged
that simplify and clarify the ideas expressed in OGSI, called WS-Resource Framework
(WS-RF).

54 A. Sánchez et al.

While the motivation for the WS-RF is primarily the desire to integrate recent de-
velopments in Web services architecture, its design also addresses several criticisms of
OGSI from the Web services community. In [CFF+04] we can see these criticisms:

1. "Too much stuff in one specification". Different functions are not clearly separated
in OGSI. This makes difficult the improvement of the existing functions and the
inclusion of new ones.

2. "Does not work well with existing Web services and XML tooling". OGSI uses
XML but it does not use the standard XML Schema. Therefore, there are problems
because developers are not familiarised with it.

3. "Too object oriented". As we have seen, OGSI models a stateful service, but Web
Services are stateless. WS-RF establishes an distinction between the service and the
stateful entities called WS-Resources.

4. "Introduction of forthcoming WSDL 2.0 capability as unsupported extensions to
WSDL 1.1". OGSI uses constructs from WSDL 2.0, but delays in the publication of
this version of WSDL makes difficult the interact between OGSI and Web services
tools.

3 Proposal

In this section we are going to establish the foundations of our architecture. First of all,
we are going to define the features and requirements that our architecture has to meet:

– Our architecture is based on the MAPFS file system, because of its features. The
implementation of MAPFS-Grid allows heterogeneous servers connected by means
of a wide-area network to be used as data repositories, by storing data in a parallel
way through all the clusters which make up the Grid. However, this feature must not
interfere with its functionality as an infrastructure for high performance clusters,
composed of homogeneous nodes connected by means of a local-area network. In
short, it should be possible to access to MAPFS in the same way that was accessed
before. Thus, our approach is being implemented as a new layer in the MAPFS
architecture, keeping the MAPFS interface. This new layer has been called MAPFS-
Grid, as we mentioned above. Both layers, MAPFS and MAPFS-Grid, are accessed
by applications, according to their requirements.

– It seems logic that the MAPFS-Grid implementation follows the new philosophical
trends of the Grid community shown in section 2, being close to the Grid Services
technology. Therefore, our approach proposes publishing all the functionality of
the file system by means of a GS that we will denote MAPFS GS (MAPFS Grid
Service). Thus, an external application to the cluster can access to the functionality
of MAPFS system through this service. Thanks to IS, clients or the broker can search
the most suitable GS, according to their features (described by their SDEs) for I/O
operations. Read and writes operations in MAPFS system are made on a set of data
servers of the cluster, called Storage Groups [SPSP+04]. Before using MAPFS in a
Grid environment we must extend the definition of storage groups, including both
clusters and data servers.

A Flexible Two-Level I/O Architecture for Grids 55

– MAPFS-Grid, as MAPFS, manages the parallelism logic on the client, using data
servers as data repositories solely. In this case, clusters are seen like data repositories,
hiding the parallelism at low level. Conceptually, the only difference is that MAPFS-
Grid considers the clusters as data repositories, and one of the nodes of every cluster
must support the MAPFS Grid Service.

We can take advantage of the two levels of parallelism of MAPFS-Grid, by using
MAPFS GS in a node of every cluster, and MAPFS to access data in parallel (see
Figure 4).

3.1 Fitting the Two Different Technologies

As it can be observed in [GLO], Grid Services technology uses a programming language
that contributes to the platform independence and is widely used within the Web Ser-
vices technology (Java language). However, MAPFS file system is implemented in a
programming language that allows to reach a low level of abstraction of the hardware,
very advisable from the point of view of the file system designer (C language).

This implies that it is necessary a new layer in the MAPFS-Grid architecture, which
is denominated MAPFS Adapter. This layer makes possible the adaptation between
MAPFS-Grid and MAPFS, providing the interconnection between different program-
ming languages (see Figure 5). Furthermore, this layer will hide complex details of the
MAPFS implementation to the grid users by means of the use of internal tables that
connect file descriptor returned by MAPFS-Grid with the more complex data structure,
necessary for storing a file in MAPFS.

This implies that it is necessary a new layer in the MAPFS-Grid architecture, which is
denominated MAPFS Adapter (see Figure 5). This layer makes possible the adaptation

Fig. 4. Two parallelism levels

56 A. Sánchez et al.

Fig. 5. Adaptation between MAPFS-Grid and MAPFS

JAVA
INTERFACE

MAPFS_
APIC

J

N

I

MAPFS

1

2
.
.
.

Descriptor
table

Fig. 6. MAPFS Adapter

between MAPFS-Grid and MAPFS, providing the interconnection between different
programming languages. This layer will hide complex details of the MAPFS implemen-
tation to the grid users by means of the use of internal descriptor tables that connect file
descriptor returned by MAPFS-Grid with the more complex data structure, necessary
for storing a file in MAPFS. Furthermore, a new class, called MAPFS APIC, is required
to hide the JNI (Java Native Interface) conversion from Java Interface of MAPFS-Grid
to the C Interface of MAPFS. This conversion can be seen in Figure 6.

3.2 Environment Complexity

Since a grid is a very complex environment, it is very difficult to configure it in order to
get the best performance that the system can obtain. It is advisable to perform a system
autonomic management, allowing the system to be monitorized and self-configured to
improve its performance.

The use of GS can make possible the autonomic management of the whole system.
The most important parameters, which must be considered in the selection of a storage
group which a I/O operation must be made in, can be published in the SDE of the MAPFS
Grid Service associated with each cluster. In this way, we can know externally different
values that affect to the performance of the whole cluster. For instance, the total number

A Flexible Two-Level I/O Architecture for Grids 57

of nodes of a cluster is a value externally unknown. With this method, the number of
nodes of the cluster could be published in the SDE. Other different values that define a
cluster, like the network bandwidth among the internal nodes or its workload, could be
also known by an Grid application external to the cluster. In this way, the broker could
take a better decision about which are the most suitable resources to make a I/O request.

4 Conclusions and Future Work

In this paper we have deeply analyzed the way of obtaining a better performance in
data access in a Grid system. We propose to make two levels of parallelism exploiting
the existing clusters in a Grid environment. The high level provides parallelism among
the grid’s clusters, and the low level provides parallelism among all the nodes of each
cluster. Furthermore, we have shown an architecture that adapts a parallel file system
MAPFS designed to its use in clusters to a Grid environment.

As ongoing and future work, we are currently working with the aim of making a
prediction about the future behavior of the system, according to the analysis of the
current system state. The analysis of the SDEs values of each GS, especially those
internal values of a cluster, can help to know the system behavior and make predictions
based on logs and mathematical models.

An overview of the modifications made when moving from OGSI to theWS-Resource
Framework can be found in [CFF+04].We present details about the mappings from OGSI
concepts and constructs to equivalent WS-RF ones. In this sense, as future work we think
to extend this model to WS-Resource Framework following the guidelines explained in
such paper.

Acknowledgments

This research has been partially supported by Universidad Politécnica de Madrid under
Project titled “MAPFS-Grid, a new Multiagent and Autonomic I/O Infrastructure for
Grid Environments”.

References

[CFF+04] K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. David
Snelling, and S. Tuecke. From Open Grid Services Infrastructure to WS-Resource
Framework: Refactoring & Evolution, 2004.

[CLIRT00] P.H. Carns, W.B. Ligon III, R.B. Ross, and R Thakur. PVFS: A parallel file system
for linux clusters. In Proceedings of the 4th Annual Linux Showcase and Conference,
pages 317–327, October 2000.

[DlSPH03] Marı́a De los Santos Pérez Hernández. Arquitectura multiagente para E/S de alto
rendimiento en clusters. Master’s thesis, Universidad Politécnica de Madrid, 2003.

[FKNT02] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration, 2002.

[FKT01] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of SuperComputer Applications, 15(3),
2001.

58 A. Sánchez et al.

[FKTT98] Ian T. Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architec-
ture for computational grids. In ACM Conference on Computer and Communications
Security, pages 83–92, 1998.

[Fos02] Ian Foster. What is the Grid? A Three Point Checklist. Grid Today, 1(6), July 2002.
[GGF] Global Grid Forum. http://www.ggf.org/.
[GLO] The Globus Alliance. http://www.globus.org.
[MDS] The Monitoring and Discovery Services. http://www.globus.org/mds/.
[PCG+03] Marı́a S. Pérez, Jesús Carretero, Félix Garcı́a, José M. Peña, and Vı́ctor Robles. A

flexible multiagent parallel file system for clusters. In International Workshop on
Parallel I/O Management Techniques (PIOMT’2003) (Lecture Notes in Computer
Science), June 2003.

[PCG+04] Marı́a S. Pérez, Jesús Carretero, Félix Garcı́a, José M. Peña, and Vı́ctor Robles.
MAPFS-Grid: A flexible architecture for data-intensive grid applications. Grid Com-
puting (Lecture Notes in Computer Science), 2004.

[PWF+02] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community Au-
thorization Service for Group Collaboration, 2002.

[SPSP+04] Marı́a S. Pérez, Alberto Sánchez, José M. Peña, Victor Robles, Jesús Carretero, and
Félix Garcı́a. Storage groups: A new approach for providing dynamic reconfiguration
in data base clusters. In Proceedings of the IASTED International Conference on
Parallel and Distributed Computing and Networks (PDCN 2004), Austria, 2004.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 59 – 74, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Data Driven Infrastructure and Policy Selection to
Enhance Scientific Applications in Grid

Jose M. Perez, Felix Garcia, Jesus Carretero, Jose D. Garcia,
and Soledad Escolar

Computer Architecture Group, Department of Computer Science,
University Carlos III de Madrid, Spain
jmperez@arcos.inf.uc3m.es

Abstract. Most works on Grids have taken an approach where the system is a
mixture of clusters and other resources put together with the help of some ser-
vices. But this solution is a simplistic one that tries to grow from the cluster per-
spective. We think that the Grid model should be different and near to the p2p
model, especially in the I/O field where the network and the heterogeneity of
the infrastructure play an important role. In this paper we present a model to
organize the DataGrid Infrastructure using concepts as data phases and a p2p
approach, in order to select the adequate working policies. These concepts
allow the definition of a clearer model for our DataGrid Architecture than a
mixture of resources. We present a model relying on the former concepts, their
implementation in an I/O middleware for Grids, called GridExpand, and the
evaluation of some of the concepts presented.

1 Introduction

Nowadays, a trend for high-performance computing is to use all available computa-
tional resources in several centers under a common set of services to provide high
computational performance. The resulting entity from that trend has been called a
Grid.

A Grid [1] is a huge bundle of resources geographically distant that try to coordi-
nate their efforts to provide computational services. Currently a huge computational
power can be obtained using clusters and grids, however I/O has become a major bot-
tleneck, as it already was in high-performance computing [2]. In Grids, this problem
is more important due to the distances among resources (latency problem) and the low
speed of some networks. An approach to alleviate this problem is the DataGrid, a set
of storage resources and data acquisition instruments that try to feed the applications
running in the Grid with the necessary data. To alleviate the bandwidth problem most
DataGrid projects [3][4] rely on special networks that interconnect several computa-
tional centers. And to alleviate the latency problem most DataGrids have adopted the
usage of replicas, but this solution raise other questions: When should be replicated?
How much replication should be done? Where the replicas should be placed? Much
work has been done in the Grid replica field, but usually all the work performed de-

60 J.M. Perez et al.

scribes a read-only replica system, which invalidates this model for cooperative appli-
cations that need to update the replicas.

Replicas were also an approach in clusters and distributed systems [5][6]. Clusters
and old MPPs have evolved to use much more sophisticated systems, as caches
[7][8][9], which can be seen as fine-grain replicas, partial replication, etc.

Another problem related to grid data replication is that the datasets used in grids
may be huge, in the order of Gigabytes or Terabytes; which may make replication
very costly, or even impossible, causing delays in the execution of an application due
to the lack of data. Deferred data access, in order to get the data in background, has
been proposed [10] to alleviate part of the problem.

Most emphasis has been done in the issues related to initial data access, specially
the so called famous datasets, but we think that the access to remote famous datasets
is not the only role of the DataGrid. Once the application has the initial data, the Data-
Grid must be used to storage temporal results, checkpointing, results datasets, etc. It
usually means using several heterogeneous resources from one or several sites in a
coordinated and efficiently way, which depends on the datasets, the infrastructure, the
application), the DataGrid’s load, etc.

Heterogeneity creates a major problem, because established policies are mostly
though for homogeneous environments, and, at the moment, this problem has not
been addressed by the DataGrid community. Some related works can be found in the
high-performance storage community [11][12], but most of them work with homoge-
neous systems and remote storage play a second role.

In this paper a data driven architecture for the Grid is presented. Section 2 shows
the data cycle of an application, from initial acquisition to final results. Third section
emphasizes the work that must be done with data after their acquisition, analyzing the
factors that have impact on the access to data in heterogeneous storage resources. Sec-
tion four presents an implementation of our theoretical infrastructure model. Section
five shows some evaluation results. And finally, section six presents the conclusions
and future works.

2 Data Application Phases

Three phases can be distinguished related to data in the execution of an application:
reading of initial data (IP), writing of intermediate results and checkpoints (WP), and
writing of the result data (RP) (Fig. 1).

Fig. 1. Data Phases during application running

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 61

In a local environment, or in small clusters, the management of these phases and
the policies used to manage data can be the same. However, as we shift to a huge dis-
tributed environment with high level of heterogeneity, the policies of each phase may
vary widely.

Another important parameter in the execution of grid applications is the location of
the application’s processes, and the distance to the data. In order to analyze a Data-
Grid infrastructure we must take into account if the application is running in one or
several sites, and if the data are local, in a close place, or in some remote place. Sev-
eral techniques have been proposed to enhance data access: replicas, site caches, local
caches, parallel I/O, etc. The performance of the storage system may be influenced by
the techniques selected. Their usage must be based on the characteristics of the infra-
structure, the data location and the application being running. Below we study the
dataset phases with some detail.

2.1 Initial Dataset Phase

The initial dataset phase deals with the acquisition of initial data, which we can cate-
gorize in two classes: famous data and common data. Famous data are generated from
some important sources, as experiments or huge simulations. Those data are accessed
from a great number of clients and they usually occupy a great amount of read-only
storage space. Common data are not so popular datasets that can proceed from other
applications, usually related applications.

Usually, access to initial data is made through replicas, but it seems clear that we
can not replicate everything everywhere. For this reason most DataGrid architectures
only replicates famous datasets. However, we also have to take into account the ac-
cess to other initialization data. In order to increase the access performance to those
data other techniques must be used.

Another problem with replicas is their actualization when a dataset is updated.
Replica updating arises two kinds of problems: a consistency problem if we want to
run an application using the nearest replica and it is not updated and a concurrency
problem if an application runs concurrent tasks simultaneously in several sites and
each site access to different replicas, some of them updated and other with old ver-
sions.

A traditional solution to solve the data replication waste of space and the consis-
tency of data has been the usage of caches and consistency protocols. Another trivial
solution is to avoid the consistency problem and to access directly to the data through
the network. This is the solution used in most parallel file systems, but this solution
may be costly in time terms. Table 1 shows strategies for an application to access the
initial data, taking into account whether data are available in the site where the appli-
cation is executed, and whether the application has tasks in one or several sites.

As shown in Table 1, access to initial data residing in the same site does not create
problems. If the computation is running through several sites some problems may
arise whether the data are not updated in all the places, so, replica and cache consis-
tency must be checked.

Major problems arrive when data are not available in the execution site. If that case
data must be obtained from remote sites. Based on the mechanisms used for accessing
data, different issues must be taken into account:

62 J.M. Perez et al.

• If replica mechanisms are used, a close replica must be localized or a new replica
must be created in the site. If the application runs in several sites, the problem is
bigger. Several works has been done in order to find the better placement of repli-
cas [13][14] trying to alleviate the cost of replica creation.

• The cache solution has similar problems but at a smaller scale, as only some blocks
are cached. But this creates a new problem: what blocks must be cached to have a
good hit ratio? In order to solve this problem, some kind of informed requests or
prediction methods for next requests are needed.

Direct access methods may be a good solution in some cases. But it can be a costly
one if all the applications that run in a site access the same remote datasets. In this
scenario, a replica or cache system may alleviate the data load. Direct access storage
can be enhanced using techniques as Parallel I/O and informed/intelligent prefetching
techniques.

Table 1. Strategy rules for accessing initial data

Data available on the site Data unavailable on the site
Replica Cache Direct Replica Cache Direct

Computation per-
formed in one site

Nothing Nothing Nothing Access to
nearest
replica in
other site,
or create a
new rep-
lica

Go for
some data
and put
them in
the cache

Access
the data

Computation per-
formed in several
sites

Check if
all the
replicas
are con-
sistent
(same
version)

Nothing
(Assert
validness
of the data
cached)

Nothing Access to
nearest N
replicas,
or create
new N
replicas.

Go for
some data
and put
them in
the cache

Access
the data

 2.2 Working DataSet Phase

During the computing process the application could create new data, as temporal
datasets, checkpointing, visualization data, etc. The working dataset size may be
greater that the original data. For that reason, we could also want to use the DataGrid
resource in order to store them temporarily. However, the usage of remote storage
may not be a good idea because temporal data must be stored as nearest to the tasks as
possible in order to achieve a high-performance. More complex issues may arise
whether application’s tasks run in several sites and a consistent view should be main-
tained.

Table 2 shows the problems that can arise when the application is in a local envi-
ronment inside a DataGrid, and some techniques that could enhance performance by
integrating several storage resources.

In order to select one of these solutions the working dataset size must be taken into
account. For example, it is not recommendable to use local storage whether we are deal-
ing with a huge amount of data or whether the data are shared among several nodes.

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 63

Table 2. Several processes of an application working with the same data

 Data consistency must be maintained No data consistency must be main-
tained

 Several tasks
work with data

One task works
with data

Several tasks
work with data

One task works
with data

All applica-
tion’s tasks run
in one site

DFSs
Parallel I/O
RAID
+
Consistency
Protocols

Local storage
Parallel I/O
RAID

DFS
Parallel I/O
RAID

Local storage
Parallel I/O
RAID

Application’s
tasks running
in several sites

DFSs
Parallel I/O
+
Consistency
Protocols

 DFSs
Parallel I/O

In addition to those techniques, some others can be used to provide high-
performance I/O, as collective I/O [15], data sieving [16], etc. A great deal of work
has been performed in this field considering homogeneous systems. In the DataGrid a
great level of heterogeneity among storage nodes must also be faced.

Management of the resources is more complex if we consider that several applica-
tions may be also running simultaneously. This leads to heterogeneity not only in re-
sources, but in the policies that each application needs to obtain high-performance
I/O. For this reason we need some kind of informed/adaptive/intelligent mechanisms
to guide data access policies used by the applications.

2.3 Result DataSet Phase

New resulting data may lead to update existing datasets or to create new ones. Creat-
ing new datasets does not cause many problems aside the usage of new storage
resources, and the creation of replicas if needed. Major problems arrive whether exist-
ing data must be updated, especially if several replicas must be updated. Most Grid
architectures put aside this problem indicating that replicas are read-only datasets.

Table 3. Treatment of the datasets generated by an application

Update dataset New dataset
Replica Cache Direct Replica Cache Direct

Computation
performed in
one site

Update all
the replicas

Update
/Invalidate
all the
caches

Nothing
Data al-
ready up-
dated

Inform the
replica ser-
vice of new
dataset

Write the
data to
permanent
storage.

Nothing
Dataset
already
created

Computation
performed
through sev-
eral sites

Synchro-
nize all the
changes
and update
all the rep-
licas

Synchro-
nize all
the data,
and up-
date/ in-
validate
cache

Nothing
Data al-
ready up-
dated

Put together
all data, an
create a
new file, in-
form the
replica ser-
vice of new
dataset

Put to-
gether all
data.

Put to-
gether all
data. If
Parallel
I/O is
used,
nothing to
do (paral-
lel file)

64 J.M. Perez et al.

Table 3 presents some possibilities in order to integrate the result datasets in the
DataGrid based in the mechanisms used to access data.

The usage of replicas may lead to a huge data flow if all replicas must be updated,
or whether the replicas have to be invalidated and created again. The problem in-
creases if the application has been running through several sites and the results must
be integrated in a single view.

The integration of results in one file might be the common solution, and requires
the movement of data to some site. But, if the DataGrid support parallel files, all the
available working datasets could be integrated in one result parallel file.

The usage of caches may alleviate the update/invalidate work because they only
maintain a data subset near the clients and only must actualize a smaller amount of
data in storage system.

2.4 Application to Our Grid Architecture Approach

Based on the study presented, we have selected different techniques to access data in
each file (as shown in Table 4).

Table 4. Selected Techniques for each phase

Initial
Phase

-Read-Only Replica for some famous data.
-Cache by site with informed/intelligent prefetching
-Direct Access with Parallel I/O if data are not in the neighbourhood.

Working
Phase

-Direct Access with Parallel I/O and other high performance I/O techniques.
-Emphasis in the use of local or nearest storage resources.

Result
Phase

-Cache consistency protocols.
-Direct Access with Parallel I/O.
-Parallel files (easy integration of results across several sites.)

Parallel I/O has been selected as a technique to increase data access bandwidth and
load balancing. Also other techniques as collective I/O and data sieving can be used in
order to achieve high performance I/O. The usage of replicas has been limited to fa-
mous data with read-only access, which alleviates most of the problems related to
consistency. Cache by site is the mechanism chosen in order to performance increas-
ing, but data consistency must be taken into account when caching data.

During the Working phase the decision taken is to maintain data as close to the ap-
plication as possible, but using all the DataGrid resources. This issue is discussed in
next sections, where the logical components of our grid storage model will be defined.

3 Storage Architecture

Independently of the data access phase, the infrastructure’s features and the user data
access pattern must be taken into account.

Access to data in a DataGrid storage infrastructure may involve several important
factors: usage of one or several storage nodes, kind of network, server’ performance,
protocols, etc. According to them, the storage nodes may vary greatly from a central

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 65

huge storage server to a homogeneous storage cluster. Each of these configurations
may require different allocation, caching, prefetching, or replica policies.

3.1 Storage Infrastructure Concepts

To cope with the diversity of the Grid, different types of data partitions must be de-
fined. A DataGrid partition P is a set of storage nodes (si) that support a file. The fea-
tures of a partition are derived from the storage infrastructure. A partition is defined
by the storage nodes’ location (Lsi), the hardware characteristics of each storage node
(Hsi), and the network protocols used (Nsi).

Taking into account physical resources across the DataGrid infrastructure, three
possible kinds of partitions can be distinguished:

• Server/Standalone: Only one storage node is used to store data (which implies not
parallel file access).

• Intra-grid: The data of a file are distributed inside an organization.
• Inter-grid: The data of a file are distributed through several organizations.

If the storage nodes features and network performance are taken into account two
kinds of scenarios can be distinguished:

• Homogeneous storage nodes: The common example is a cluster.
• Heterogeneous storage nodes: Several PCs across a department.

Another feature that must be taken into account is the networking infrastructure
and the set of protocols used to access data. So two scenarios can be distinguished:

• Homogeneous set of protocols: Only one network protocol is used to access to the
storage nodes, for instance, GridFTP.

• Heterogeneous set of protocols: Several protocols are used to access to the stor-
age nodes. For instance, in our storage infrastructure we may have a cluster with
PVFS, a set of machines with NFS, and several GridFTP servers, all of them used
in parallel to define a distributed partition.

Taking into account all the former features, a distributed partition may need differ-
ent allocation, caching, prefetching or fault tolerant policies.

3.2 Data Access Policies

In order to enhance the access to data several factors related to infrastructure and ap-
plications must be taken into account: caching, prefetching, data allocation, degree of
parallelism (number of servers), stride size, consistency, etc.

PoliciesToBeUsed = { prefetching, caching, data_allocation, n_servers,
stride_size, consistency, … }

(1)

For example, for the allocation policy of resources, several policies can be used:
random selection of nodes, greedy algorithms, allocation in nearest nodes, etc.
The policies to access a file by an application depend on the infrastructure and access
patterns to data.

Policyi = PolicySelectionFunctioni (Infrastructure, App. access pattern) (2)

66 J.M. Perez et al.

Thus, function per policy is needed in order to obtain high performance Grid I/O.
The I/O policies have been an intensive field of research, but most of the times under
a homogeneous system perspective, and most of them do not deal with the Infrastruc-
ture parameter. The Infrastructure parameter has been addressed in previous sections,
but a deeper study is required. A Partition (Pi) has been defined as the set of storage
nodes that support a file i:

Pi=∪sj (3)

In most systems, a file is supported by a single storage node (Pi = si). But in the
model proposed in this paper, it must be supported by several storage nodes and sev-
eral subfiles, in order to model parallel I/O.

Filei=∪SubFilei / Subfilei stored in node si (4)

So, the Infrastructure used by a file is supported by the storage nodes that contain
the subfiles. The infrastructure aspect of storage nodes can be modeled by the pa-
rameters presented in 3.1.

StorageNodeInfrastructurei = si = (Lsi, Hsi, Nsi) (5)

Equation 2 can be expanded to:

Policyi_for_subfilej=PolicySelectionFunctioni(Lsj, Hsj, Nsj , App. access pattern) (6)

As we have n subfiles and m policies, the policies for a file in our system are de-
fined by a two dimensional matrix:

FilePolicy[i=1..n][j=1..m] = PolicySelectionFunctioni(Lsj, Hsj, Nsj , App. access
pattern)

(7)

And taking into account the data access phases defined in section 2, we obtain:

FilePolicy=[PI,PW,PR][i=1..n][j=1..m]=PolicySelectionFunctioni(Lsj, Hsj, Nsj ,
App. access pattern)

(8)

This general system allows modeling the policies to be used in a huge distributed
heterogeneous system, but it is also valid for other common environments.

3.3 Storage Infrastructure Entities

In order to facilitate the analysis and the application of existing mechanisms, an or-
ganization of the storage resources is performed. The main organization’s element is
the “I/O community”.

I/O communities consist on one or several storage nodes in a LAN (see Fig. 2) that
support the storage of nearby clients, but sometimes could serve clients in other I/O
communities.

As the storage infrastructure grows, the apparition of new I/O communities must
be organized. All the I/O communities in an enterprise or a university compose an
element called a data intragrid (see Fig. 2). Usually, data intragrids connects I/O
communities with a fast network infrastructure. The connection of several intragrids
may lead to the apparition of what it is called an intergrid (see Fig. 2). The aim of this
organization is to increase locally of data and applications in a Grid, and to facilitate

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 67

the integration analysis of several sites through the entire DataGrid. As noted before
the policies used in I/O communities, intragrid and intergrid could be different. Next
sections develop the approach described and present an implementation of the con-
cepts proposed in this paper.

3.3.1 I/O Communities
An I/O community is defined as a set of neighbour storage nodes that serve requests
to clients, most of them in the neighbourhood. Our definition has some similarities
with other [17]. Each I/O community has a resource broker and location services for
I/O nodes. Three metrics have been defined in order to assist the creation of I/O
communities and the selection of the storage nodes that clients of the I/O community
are going to use.

• Distance metric (Δ).
• Storage performance metric (Π).
• Network performance metric (Ν).

Those metrics are directly related to the Infrastructure parameters proposed in (5):

• Lsi: Location of the Storage nodes Δ(x, y): Distance metric between two nodes.
• Hsi: Hardware characteristics Π(x): Performance metric for a node.
• Nsi: Network protocols used to access data Ν(x, y): Network performance met-

ric between two nodes.

Formula (8) can be rewritten taking into account these parameters:

FilePolicy[k=PI,PW,PR][i=1..n][i=1..m] = PolicySelectionFunctioni’ (D(j,k),
P (j), N(j,l) , App. access pattern)

(9)

The distance metric (Δ) helps to cluster storage nodes in I/O communities. Each
I/O community has a broker and location service that is called Center (C). After those
services are started the storage nodes try to locate these services and add themselves
to the communities that are inside a defined radius, this threshold can be statically de-
fined in the community initialization or extended dynamically to allow farther nodes
to be added to the community.

Communityi = ∪sj / sj∈DataGrid∧Δ(sj, C) RadiusCommunityi (10)

If the node hosting the location and resource broker fails after the community is al-
ready formed, another node of the community starts those services and the I/O com-
munity remains.

The distance metric used take into account the IP number proximity, the ping time
to the Center and whether the storage nodes are in the same Ethernet segment.

When clients desire to access data, the file policies must be defined taking into ac-
count the distance metric and a data performance metric. The network performance
metric (Ν) is not taken into account if a high speed network is available through all
the community.

For example, the default allocation policy in our infrastructure is that a client uses
those nodes closest to it. When the client needs to create new files, it contacts with the
broker service and asks for available storage nodes. If possible the service answers
with storage nodes of its own I/O community.

68 J.M. Perez et al.

The performance metric is used to rank the storage nodes. This allows the system
to assign new storage tasks to those nodes than could cope with the new requests in a
better way. The performance metric defined in our system is based on hardware char-
acteristics of each storage node and free space in the node. As can be seen, the values
for each storage node may vary, which implies that some times one node may be pre-
ferred, but other may be discarded to store new files.

It may occur that none of the storage servers in the I/O community have enough
free resources for new data. In this case, two solutions are possible: adding storage
servers or using storage servers in other communities. For the second solution we
have defined a network performance metric (Ν) that, joined with information obtained
from the distance metric (Δ), allows finding those I/O communities that better fit the
needs of the former community clients.

The network performance metric takes into account the bandwidth and the latency
among I/O communities (among centers).

3.3.2 Intragrid I/O
In the network of an enterprise or a university the existence of several I/O communi-
ties might be a common scenario; for example, one for each department. The aggrega-
tion of several I/O communities is defined as an intragrid.

Intragridi=∪Communityj / Communityj∈DataGridCommunities ∧

Δ(Center(Communityj), Center(Communityk) RadiusIntraGridi

∧∀Communityk∈DataGridCommunities

(11)

As described before, an I/O community may request the service of storage nodes
for new files. If a parallel distributed partition is used, the system may cope with a
parallel partition in which the servers, protocols and network characteristics may dif-
fer from one subfile to another, and reside in several communities.

Other kind of interactions may appear among I/O communities. It is normal for a
client to access data in its I/O community, but sometimes the client may need to ac-
cess data in other I/O communities. For that reason, if the location system into an I/O
community does not find the requested file in the community, it sends the request to
the nearest (distance and network performance metric) I/O communities until the file
is found. Currently, a simple protocol is used for location, but we do not discard the
integration with Chord [18] or other location system.

3.3.3 Inter-grid I/O
In order to connect several organizations (intragrid), an intergrid can be defined.

Intergrids bring up new problems, such as security, network performance, network
infrastructure and services interoperability that are research lines in Grids nowadays.

As indicated in previous sections, replication has been a common solution to solve
the data access problem. But replication arises some new problems again, mainly con-
sistency and replication management (replicating 1 TB each day may not be feasible).
In the infrastructure proposed the replication is only used for read-only data and ap-
plicable to famous datasets. For other scenarios, a site cache called Cache-Proxy is
defined.

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 69

Those Cache-Proxies reside in several nodes of an intra-grid an act as a cache for
files or subfiles that reside in other intra-grids. Those Cache-Proxies contact with the
I/O communities when they need to update, to request or to invalidate data. The usage
of those Cache-Proxies is not always advisable; so, other solution is the direct access
to remote storage nodes. The selection of one or other mechanisms is defined by the
policies selected. Currently LAN protocols (NFS, CIFS, PVFS) are used in order to
provide access to I/O communities and intra-grids, and WAN and grid protocols
(GridFTP, WebDAV) for inter-grid data access.

Fig. 2. Storage Infrastructure Architecture

4 GridExpand Storage System

In order to test some of the ideas proposed in this article, a DataGrid middleware was
developed. The approach defined integrates all available data storage servers, organ-
izes those resources and applies them necessary techniques based on the DataGrid
infrastructure. This implementation is called GridExpand, being one of its basics the
effective integration of existing protocols, services and existing solutions (See Fig. 3).
GridExpand is an evolution of the Expand parallel file system [19] for Grids, which
allows the system to scale and to continue providing high-performance I/O as the sys-
tem grows from small clusters to DataGrids. It also provides a virtualization of the
Grid Storage Infrastructure providing common I/O APIs and the possibility to define
new ones that allows a high control over the application’s environment and behavior
of the application based on he data phases and the infrastructure.

GridExpand uses the available protocols in a network to communicate with the
data servers without needing to install new and specialized storage servers. The
former approach offers several advantages: no changes to the servers are required,
parallel I/O middleware construction greatly simplified, usage of servers with differ-
ent architectures and operating systems, usage of heterogeneous protocols, and fault-
tolerance using a network RAID approach.

70 J.M. Perez et al.

Fig. 3. GridExpand Architecture

The GridExpand client middleware structure has three major parts:

• Abstract File Interface (AFI): new user I/O interfaces can be implemented over
an Abstract File Interface (AFI). This interface exports GridExpand core functions
as well as some structures (Virtual file descriptor) that an I/O API can use to access
to the middleware. The functions exported by the core system comprehend basic
I/O functions (open, create, read, write, etc) and advanced functions (request split-
ting, prefetch policy, cache policy, fault tolerance, etc). This AFI also allows a dif-
ferentiation in the different data phases, supporting different policies for each of
them.

• Network File Interface (NFI): GridExpand uses the available protocols in a net-
work to communicate with the data servers without needing specialized servers. In
order to integrate existing protocols in the GridExpand system a Network File In-
terface (NFI) has been defined, similar to the ADIO [20] used in ROMIO. NFI al-
lows the creation of specific protocol plug-in modules that allow the access to all
existing network storage server. Those modules translate the internal representation
of GridExpand to specific protocol requests and structures. At the moment, two
modules have been developed: local storage and NFS2.

• Core System: The core system is the central part of the system; it allows applying
different policies to each files and access to Grid services as the resource broker or
the localization services in order to isolate the user from these issues. The core is
designed in order to allow the easy substitutions of functions for each data access
policy. It also abstracts the common structures and functions used in most file sys-
tems and creates an internal representation of them.

For each distributed file (a set of one or more subfiles), GridExpand store a small

metadata file separated of the main file. This metadata file resides in databases that
also support the resource broker and the localization system.

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 71

5 Evaluation

Using the presented middleware, we have made some test in order to evaluate the im-
portance of the infrastructure and the policies used, with the aim to test some of the
concepts presented here.

The test application is an image processing application that processes a set of 1000
images. This application reads an image, applies a mask and creates new processed
image files. This application only has an initial data phase and a result data phase be-
cause it does not create temporal files, checkpointing or intermediate results.

Two I/O communities (in this case two university’s classroom) located in two dif-
ferent locations are used. Each community is composed of 16 computers with the fol-
lowing features: AMD Athlon 1700, 512 MB SDRAM, 40 GB HD, Fast Ethernet,
Linux Debian and NFS-Kernel-Server 1.0-2.

Each of the images is a parallel file supported by 8 storage nodes selected with a
greedy algorithm from the 16 nodes in each community. The test has been performed
with different number of parallel tasks, 2, 4, 8, 16 and 32.

In order to simulate the access to far communities, a delay (using nanosleep) has
been introduced in each access to data (modifying the AFI layer). The tests that use
some delays are indicated with the delay in millisecond.

Fig. 4 shows the performance for several infrastructure configurations: same com-
munity (the initial and result data resides in the community where the application is
running), close community (the initial and result data resides in a close community, in
the same intra-grid), close community/same community (the initial data resides in a
close community and the results are stored in the community where the application is

Fig. 4. Computation time results for close storage nodes

running), other intragrid-10ms (the initial and result data are stored in other commu-
nity, in other intra-grid, with 10 ms of delay). As can be seen the infrastructure used
play a great role in the application’s performance, but this difference is decreased as
the parallelism degree is increased; this fact benefits the access to data in remote
places.

72 J.M. Perez et al.

To corroborate that, the test has also been run with far communities (classrooms).
A time comparison for several architectures is presented in Fig. 5: close community
(the initial and result data resides in a close community, in the same intra-grid), other
intragrid-10ms (the initial and result data are stored in other community, in other in-
tra-grid, with 10 ms of delay), other intragrid-20ms (the initial and result data are
stored in other community, in other intra-grid, with 20 ms of delay) and other intra-
grid-30ms (the initial and result data are stored in other community, with 30 ms of
delay).

Fig. 5. Computation time results for far storage nodes

As can be seen in Fig. 5, the time to end the application is highly influenced by the
infrastructure, in this case the network metric, but also by the degree of parallelism.
So, for our application if we increase the number of parallel tasks we can access di-
rectly to the data and to avoid the usage of replicas or caches.

Of course, the former conclusions may only be valid for the image processing ap-
plication, but it is clear that specific policies (in this case location of nodes) per appli-
cation are an important issue where the infrastructure plays an important role.

Another effect observed in the image processing application is that computation
and I/O are made in the same intra-grid (16 nodes make all the work) the performance
is a little worst that when you make the I/O in a close community (See Fig. 4). The
reason is that in the first case the nodes must cope with two charges, computation and
I/O. In the second case, a community makes the computational work and the other
provides data storage. Is also noticeable that the best policy is to maintain initial data
in a close community and store the results in the community where the computation is
made. From the results obtained we must emphasize the importance of the infrastruc-
ture, the differentiation of data in several classes (or phases), and the importance in
the selection of the adequate policies.

 Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications 73

6 Conclusions

Most works on Grid computing has taken an approach in which Grids are seen as a
mixture of clusters and other resources. But a clear Grid model has not been defined,
especially in the I/O field where the network and the heterogeneity of the infrastruc-
ture play a great role. We propose the definition of new concepts and the adaptation
of old ones, as the differentiation made in the data used by the application that we call
data I/O phases. This differentiation leads to the selection of appropriate policies for
each particular case.

As the Grid environment is very dynamic, not only in the number of resources, but
also in the heterogeneity and load of the resources, the policies selected must take into
account the environment or infrastructure in which the applications are going to be
run. A great deal of work has been made in the importance of the user pattern access
to data in order to select adequate policies, but we think that in the DataGrid field the
study of the infrastructure must complement the selection of this policies. The pro-
posed model tries to cope with that importance and establish a base for this idea.

In the future we will develop that approach to provide a deeper study and model
for the influence of the infrastructure and heterogeneous resources in the DataGrid
field, and integrate the results with other works performed in the data access pattern in
order to provide a deeper knowledge in the operations and basis of the data I/O in
Grids.

References

1. I. Foster, C. Kesselman, editors. The Grid: Blueprint for a New Computing Infraestruc-
ture. Morgan Kaufmann, 1999.

2. D.Patterson, G. Gibson and R. Katz. A Case for Redundant arrays of Inexpensive Disks
(RAID). Proc. Of the ACM SIGMOD'88, (June), 109-116.

3. Sponsored by the European Union. The Data Grid Project. http://eu-datagrid.web.cern.ch/
eu-datagrid.

4. Sponsored by the U.S. DOE Office of Science. The Earth System Grid.
http:// www.earthsystemgrid.org

5. O. Wolfson, S. Jajodia and Y. Huang. An Adaptive Data Replication Algorithm. ACM
Transaction on Database Systems, Vol. 22, NO. 2, June 1997, pages 255-314.

6. Esther Pacitti, Pascale Minet, and Eric Simon. Fast algorithms for maintaining replica
consistency in lazy master replicated databases. In VLDB, pages 126--137, 1999.

7. Michael Dahlin, Randolph Wang, Thomas Anderson, David Patterson. Cooperative Cach-
ing: Using Remote Client Memory to Improve File System Performance. OSDI, Novem-
ber 1994.

8. Michael Dahlin, Clifford Mather, Randolph Wang, Thomas Anderson, David Patterson. A
Quantitative Analysis of Cache Policies for Scalable Network File Systems.
SIGMETRICS, 1994.

9. F. Garcia, J. Carretero, F. Perez, P. de Miguel, and L. Alonso. High Performance Cache
Management for Parallel File Systems. Lecture Notes in Computer Science, vol. 1573,
1999.

74 J.M. Perez et al.

10. Douglas Thain, Jim Basney, Se-Chang Son, Miron Livny. The Kangaroo Approach to
Data Movement on the Gr4id. Proceedings of the Tenth IEEE Symposium on High Per-
formance Distributed Computing.

11. Huseyin Simitci, Daniel A. Reed, Tyan Fox, Mario Medina, James Oly, Nancy Trand, and
Guoyi Wang. A Framework for Adaptive Storage Input/Output on Computational Grids.
Proceedings of the 3rd Workshop on Runtime Systems for Parallel Programming, April
1999.

12. Tara M. Madhyastha, Christopher L. Elford, Daniel A. Reed. Optimizing Input/Output
Using Adaptive File System Policies. Proceedings of the Fifth Goddard Conference on
Mass Storage Systems and Technologies, College Park, MD, September 1996, pp. 493-
514.

13. Kavitha Ranganathan and Ian Foster. Identifying Dynamic Replication Strategies for a
High Performance Data Grid. Proceedings of the International Grid Computing Work-
shop, Denve, November 2001.

14. Kavitha Ranganathan, Adriana Iamnitchi, Ian Foster. Improving Data Availability through
Dynamic Model-Driven Replication in Large Peer-to-Peer Communities. Global and
Peer-to-Peer Computing on Large Scale Distributed Systems Workshop, Berlin, May
2002.

15. Rajeev Thakur and Alok Choudhary. An Extended Two-Phase Method for Accessing Sec-
tions of Out-of-Core Arrays. Scientific Programming, (5)4:301-317, Winter 1996.

16. Rajeev Thakur, William Gropp, Ewing Lusk .Data Sieving and Collective I/O in ROMIO.
Proceedings of the Seventh Symposium on the Frontiers of Massively Parallel Computa-
tion, 1998.

17. Douglas Thain, John Bent, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau, an dMiron
Libny. Gathering at the Well: Creating Communities for Grid I/O. Proceedings of Super-
conputing 2001, Denver, Colorado, November 2001.

18. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari Balakrishnan. Chord:
A Scalable Peer-to-peer Lookup Service for Internet Applications. Proceedings of the
2001 ACM SIGCOMM Conference, San Diego, California, USA.

19. F. Garcia, A. Calderon, J. Carretero, J.M. Perez, J. Fernandez. The Design of the Expand
Parallel File System. International Journal of High Performance Computing Applications,
2003.

20. W. Gropp R. Takhur and E. Lusk. An Abstract-Devide Interface for Implementing Port-
able Paralle-I/O Interfaces. Proceedings of the 6th Symposium on the Frontiers of Mas-
sively Parallel Computation, Oct. 1996, pp. 180—187.

Modelling a Protein Structure Comparison
Application on the Grid Using PROTEUS

1 University of Catanzaro
{cannataro, veltri}@unicz.it

2 DEI - University of Padova
{comin, carlo, guerra}@dei.unipd.it

3 DEIS - University of Calabria
guzzo@deis.unical.it

Abstract. Bioinformatics applications manage complex biological data
stored into distributed and often heterogeneous databases and require
large computing power. Among these, protein structure comparison ap-
plications exhibit complex workflow structure, access different databases,
require high computing power. Thus they could benefit of semantic mod-
elling and Grid infrastructure. We present the modelling and develop-
ment of the PROuST structure comparison application on the Grid using
PROTEUS, a Grid-based Problem Solving Environment.

1 Introduction

Research in biological and medical areas (also known as biomedicine), requires
high performance computing power and sophisticated software tools to treat
the increasing amount of data derived by always more accurate experiments in
biomedicine [1]. The emerging bioinformatics area involves an increasing number
of computer scientists studying new algorithms and designing powerful compu-
tational platforms to bring computer science in biomedical research.

Among the different interests, bioinformatics is focusing on the study of pro-
teins and their biological functions. Proteins are sequences of amino acids, rep-
resented by strings. Amino acids sequences fold in three dimensional (3D) space
assuming a variety of 3D structures. Since the structure of a protein is highly
related to its functionality, knowing the amino acids sequence as well as its 3D
space conformation helps biologist in predicting protein functionalities [11]. The
high number of possible combinations of amino acids composing proteins, as well
as the huge number of possible cell-mutations, require a huge effort in designing
software environments and architectures able to manage the huge amount of
data and to support protein studies. Proteins spatial structure prediction and
folding are important issues for studying pathologies and to design new drugs.

For such reasons research communities are interested in studying existing
proteins functionalities and in discovering new ones. Databases accessible to such

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 75–85, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mario Cannataro1, Matteo Comin2, Carlo Ferrari2,
Concettina Guerra2, Antonella Guzzo3, and Pierangelo Veltri1

76 M. Cannataro et al.

communities have been designed and populated (see Protein Database, PDB
[8]) and algorithms for analyzing and comparing proteins have been designed.
Such algorithms have to deal both with string representations, i.e. amino acids
sequences, and with their 3D structures. In particular, the structural comparison
problem plays an important role in the functional classification of known proteins
and in the prediction of the function of new ones. Recently, a new approach, named
PROuST [4] has been proposed. It combines and integrates different techniques
for structure comparison operating at different levels of protein representation
with different degrees of accuracy. Comparison techniques need to interact with
huge amount of data, requiring high computational efforts. PROuST compares an
input query protein with a data set of known proteins, to obtain the 3D protein
shapes most similar to the query protein. It works in two phases. First it stores
information about the existing proteins in a hash table indexed by invariant
properties of the protein structures. These properties are the angles and distances
of triplets of segments associated to the secondary structures of the proteins. Then,
for a given query protein, the algorithm computes the same invariant features
and uses them to access the hash table and retrieve similarity information with
the existing proteins. This fist step of the processing generates a list of candidate
similar proteins. Next a dynamic programming approach is used to align the query
protein with each candidate protein of the obtained list. A snapshot of the protein
structural comparison workflow is reported in Figure 1. The protein structures
are obtained from publicly available databases, i.e. from the Protein Data Bank
that currently contains over 27,000 different structures. Thus, building indexes
and evaluating a set of candidate proteins is a computationally intensive problem.

Grid community [9] recognized bioinformatics as an opportunity for dis-
tributed high performance computing and collaborative applications. Compu-
tational Grids (or simply Grids) are geographically distributed environments for
high performance computation [10]. In a Grid environment is possible to man-
age heterogeneous and independent computational resources offering powerful
services able to manage huge volumes of data. Managing heterogeneous datasets
(e.g., protein databases) or creating new datasets (e.g., mass spectrometry pro-
teomic data [7]), may take advantages by Grid environment [12].

In this paper we present the modelling and the implementation of the PROuST
protein structure comparison application on the Grid, using the PROTEUS [2]
Grid-based Problem Solving Environment. Migrating PROuST on Grid platform
has been proposed in [6]. PROTEUS allows to design and model bioinformatics
applications on Grid, using ontologies for modelling, and workflow techniques for
designing and scheduling. In particular PROTEUS embeds an ontology based
workflow designer allowing ontology-based design of the application. Moreover, a
setofworkflow engines allows controllingandenactingdifferent phasesof activities.

The paper is organized as follows. Section 2 presents PROTEUS architec-
ture focusing on workflow management and modelling. Section 3 describes the
PROuST structure comparison method and Section 4 presents the definition
of PROuST application on PROTEUS through workflow modeling. Section 5
concludes the paper and outlines future works.

Modelling a Protein Structure Comparison Application on the Grid 77

Fig. 1. PROuST Overall Workflow

2 Workflow Management in Proteus

Semantic modelling of Grid resources and workflow-based Grid programming
are emergent trends in Grid community [3]. Along this direction, we developed
PROTEUS, a Grid-based Problem Solving Environment allowing to model and
execute Grid-aware bioinformatics applications through ontologies and work-
flows. Figure 2 shows main components of PROTEUS architecture.

The Component and Application Library contains software tools, databases,
data sources, and user-defined bioinformatics applications, whose metadata are
contained into the Metadata Repository. The Ontology Repository contains on-
tologies describing, respectively, biological concepts, bioinformatics tasks, and
user-defined bioinformatics applications, represented as workflows. The Ontology-
based Workflow Designer allows the design of a bioinformatics application as a
workflow of software and data components selected by searching PROTEUS on-
tologies. It comprises the Ontology-based Assistant, that suggests available tools
for a given bioinformatics problem, and the Workflow User Interface, used to pro-
duce workflow schema, stored into the Workflow Metadata Repository. Finally,
the WF-model Wrapper maps an abstract workflow schema into a schedulable
workflow, that in turn is scheduled (i.e. enacted) on the Grid by the Workflow
Engine.

While deploying bioinformatics applications, particular attention should be
devoted to the modelling phase; in this phase, in fact, the actors of the ap-
plication as well as the way in which they operate to reach their goals must
be described. From a conceptual point of view, such a description is equivalent
to build a workflow model, i.e., a formal description of the tasks to be carried
out, the dependencies/relationships among them (e.g. data flow, temporal prece-

78 M. Cannataro et al.

Fig. 2. Proteus Architecture

dences) and the entities involved in the application/process. Our proposal is to
use workflow capabilities of PROTEUS in order to support users in the design
of complex applications and in deploying experiments in an automatic manner.
There are many reasons supporting this choice. First, as the design phase serves
as the basis for the deployment, it is clear that correctness of the experiment
specifications should be guarantied before the deployment phase, unless to bear
the costs of doing so at implementation level. Workflow technology offers Process
definition tools that allow the user to specify a process/application in a formal
and unambiguous manner, according to some formal specification language.

Workflow technology offers several more intuitive graphical user-interfaces
to specify bioinformatics applications, thus allowing the users to encode their
knowledge without caring of implementation details.

Finally, it is generally recognized that supporting the design phase of an
applications is a prerequisite for achieving the benefits with respect to maintain-
ability, comprehensibility and reusability of the applications, which are crucial
issues in the bioinformatic domain.

2.1 Basic Workflow Concepts

Aworkflow is a partial or total automation of a business/scientific process, inwhich
a collection of activities must be executed by some entities (humans or machines),
according to certain procedural rules. In this context, Workflow Management
Systems (WfMSs) are well established technological infrastructures, aiming at
facilitatingthedesignofanyworkflow,andsupporting itsenactments,byscheduling
different activities on available entities. According to the Workflow Management
Coalition (WfMC) Reference Model (see http://www.wfmc.org), the two most
relevant componentsofWfMSs are:Buildtimecomponent andRuntimecomponent.

Buildtime Component allows the definition of the workflow by means of
some formal description such as the workflow schema, and ensures its persistent

Modelling a Protein Structure Comparison Application on the Grid 79

storage. It includes two level of specification: (i) control flow level, specifying the
dependencies among tasks and their execution requirements, through language
constructs (e.g. sequencing, synchronization, choice, etc); (ii) data flow level,
specifying the information about processing entities, such as activity assignment,
input and output parameters, etc.

Runtime Component consists of a workflow engine (often called workflow
scheduler) responsible of the enactments, by controlling and coordinating exe-
cution of activities. Moreover, it stores log files about workflow executions and
provides monitoring tools that keep track of execution progress.

2.2 Conceptual Workflow Modelling by Using UML

Many research works deal with the modeling of workflow schemes and currently
there are many existing workflow languages, such as Xlang, WSFL, and BPEL
from Microsoft and IBM; XPDL from the workflow management coalition; UML
extensions and EDOC from the OMG; and WSCI, which is under the umbrella
of the W3C, since no such languages is considered the “best” standard. In PRO-
TEUS we use the UML activity diagrams as a workflow language specification.
The Unified Modelling Language (UML) is a de-facto industry standard consist-
ing of several graphical languages for representing software system designs and
it is frequently used to illustrate processes in software applications. Recently,
the activity diagrams are useful for modelling workflow specifications [5]. In par-
ticular, several works have demonstrated that UML supports the majority of
the control flow constructs and is suitable to modelling the most of recurring
situations related to the workflow execution.

Activity diagrams notation describes activities and the flow between them,
which is determined by transitions, forking, synchronization elements, and flow
directions notations, such decision diamonds. Figure 3 shows the basic notation
for activities nodes; solid arrows represent control flow transitions; decisions are
diamonds and forks and synchronization are expressed by solid bars.

A A

Atomic node Compound node Fork Join decision/merge start final

Fig. 3. Graphical Notation for UML Activity Diagrams

3 Protein Structure Comparison: The PRoUST
Approach

The structural comparison problem plays an important role in the functional
classification of known proteins and in the prediction of the function of new
ones. This problem has been studied by several research groups using a vari-
ety of techniques including dynamic programming, graph algorithms, minimiza-
tion of distance matrices, etc. Moreover some approaches have led to the design

80 M. Cannataro et al.

and implementation of web servers, such as DALI, CE, SSAP and VAST (see
http://www.ebi.ac.uk/dali, http://cl.sdc.ede/ce.html, http://www.biochem.ucl.
ac.uk/orengo/ssap.html, and www. ncbi.nlm.nih.gov). Recently, a new approach,
namely PROuST, has been proposed [4], that combines and integrates different
techniques to structure comparison operating at different levels of protein rep-
resentation with different degrees of accuracy. PROuST consists of many com-
putational components. The computational modules that can be arranged in
various ways depending on the specific type of the requested task: a protein can
be matched against all the proteins in PDB, or against a list of representative
proteins selected from PDB (for instance, choosing only proteins with low degree
of sequence similarity), or it can be compared with another protein to obtain an
alignment of their structural elements. Moreover, a display of the aligned pro-
teins can be obtained at the level of the secondary structures only, or extended
to a subset of the atoms, the Cα backbone atoms or to all atoms.

Basically, PROuST design relies on two main techniques: it uses indexing for
a fast retrieval of similarity information from a database of protein substructure
features, followed by dynamic programming to obtain an accurate comparison and
alignment between the query protein and each of the proteins extracted from the
database by the fast index-based search. Indexes are derived from the segments
associated to the secondary structure of Proteins, i.e. α-helices and β-strands.
Recent comparisons of PROuST with stand alone procedures have demonstrated
its efficiency. Moreover in [6] a possible immersion of PROuST on a Grid based
environment has been proposed. Since PROTEUS offers a workflow management
platform for workflow design and execution on Grid (see Figure 2), after presenting
the overall PROuST workflow, we describe its design on PROTEUS.

We now review how PROuST works. More details can be found in [4]. Besides
its atomic representation (as a list of 3D coordinates of all its atoms), a protein
can be described in terms of its secondary structures (α-helices and β-strands).
Our approach represents each protein as a set of vectors associated to secondary
structures; the vectors are the best fit line segments for β-strands and the axes of
α-helices. PROuST is based on indexing techniques for database access and fast
similarity search. It computes angular features of triplets of segments associated
to secondary structures. These features generate triplets of numbers that provide
indexes to specific locations in an Hash Table (HT). Each table cell (bucket)
consists of a list of records corresponding to proteins with one or more triplets
of secondary structures that index into that cell. The Hash Table is built in a
pre-processing phase that inserts all proteins and takes O(n3) time for the
insertion of a protein with n secondary structures.

The similarity search problem involves a query protein Q and all the
other proteins represented in the hash table. The search procedure accesses the
database looking for triplets of secondary structures that are similar to those of
Q, that is triplets with similar angles and distances between their vectors.

Proteins similar to Q are selected according to a similarity measure that takes
into account the number of similar triplets between the two proteins. For each
triplet of segments associated to the secondary structures of Q, the related three

Modelling a Protein Structure Comparison Application on the Grid 81

dihedral angles are computed and used as indexes to a table cell. All similar
triplets of all stored proteins are stored in either that same cell or in adjacent
cells. For each protein in the database, the search procedure keeps track of the
number of triplets that are found similar to triplets of the query protein Q by
incrementing for each access in a given cell a proper counter associated to that
protein. After all triplets of Q have been examined, the proteins with the largest
value of such counter are selected as the ones most similar to Q. The indexing
method described above returns a ranking of candidate similar proteins but does
not generate an alignment of secondary structures and atoms of the query protein
with each of the candidate proteins.

The structural alignment procedure based on dynamic programming gen-
erates pairs of corresponding secondary structures and atoms of the two proteins
that satisfy the continuity constraint given by the order of secondary structures
along the sequence. The alignment optimizes a function based on the score be-
tween two secondary structures defined in terms of the number of similar triplets.
The score is derived from the Hash Table (HT).

The final stage of the protein structure comparison is the superposition of the
two proteins, that is the determination of the rigid transformation that results in
the ”best” overlap of the two proteins. Horn’s algorithm is used to determine the
optimal transformation that minimizes the Root Mean Square deviation (RMSD)
distance between sets of atoms (pairs of corresponding points of two proteins).

4 Designing PROuST Application on PROTEUS

Currently PROuST is implemented as a stand alone application, so we wish
to implement it by using a service-oriented approach. The main phases of the
application have to be made independent by each others and implemented as
autonomous software components, able to fulfill requests coming by different
users, or triggered by external events.

Taking a bottom-up approach, we first model with PROTEUS the inner
workflow schema of each PROuST phase (that represents a service), such sub-
workflows are then combined to obtain the overall application. The description
of workflows is carried out by means of the UML syntax introduced before. Note
that activity diagrams specify not only the control flow, but also the data flow.
This is an important feature because to enact a process, a WfMS needs to know
which activity to call next and what data the activity needs. UML class diagrams
can be used to describe the internal structure of data objects. In the following,
the main phases of the PROuST application (Pre-processing, Similarity search
and Structural alignment) are described as UML activity diagrams.

Pre-processing. This phase is represented as the activity diagram of Figure 4
where UML data flow (dashed arrows) is the connection of data objects with
activities that require them as input and/or produce them as output. The input of
this phase, the PDB file, is processed to obtain an internal protein representation
allowing an accurate and efficient protein comparison. In some cases the DSSP
database can be queried to obtain information about the secondary structures of

82 M. Cannataro et al.

a protein if it is not present in the PDB file. The output of this phase is the Hash
Table (HT) introduced above. This phase is executed once, when the system starts
up and whenever updates affect the PDB. From a computational point of view,
Pre-processing is triggered by relevant updates in PDB, or by timeout expiration
(e.g. each month), or by user action. Hash Table updating can be obtained by
(incrementally) applying the Pre-processing phase on a local copy of the updated
PDB file, or by using an agent-based system to periodically report PDB updating.
A structured relational database allows to enhance the Pre-processing phase. In
summarythePre-processingphasehasINPUT={PDB,DSSP},OUTPUT={HT}.

As reported in the workflow of Figure 4, the preprocessing phase starts by
accessing the PDB file (“PDB access” task). If PDB contains the secondary
structure of a protein the task “Compute SS from PDB” is executed; otherwise,
the DSSP file is used for its extraction (“Compute SS from DSSP” task). However,
if the secondary structure is not available in any databases, the current PDB file is
no more processed and the workflow returns in the starting activity. The secondary
structure of a protein results in a couple of files representing its starting and ending
residua (file .sec) and the coordinates of the carbon atoms (file .ca). They are
the input of the task “Vectorial representation” that computes a representation
(file .fit) of the secondary structure stored in the Hash Table (task “Hash table
update”). Specifically, two possible updates might occur: (1) the insertion of a
new protein, and (2) the insertion of a new version of an existing protein.

Similarity Search. In this phase (Figure 5), a target protein P , identified
through its PDB identifier (e.g. 1tim is the <pdbID> of the protein Tim barrel),
is compared against all the proteins contained in HT to obtain a list of similar
proteins LS , according to a similarity measure S.

PDB
Access

Processing
PDB

DSSP
Access Vectorial

representation

Update
Hash Table

[not

contain]

Processing
DSSP[contain SS]

[not contain]

[not

complited] [complited]

Protein

FormatResult::
files .pdb

[contain SS]

FormatResult::
files .dssp

DataStructure
Hash Table

FormatResult::
files sec, ca

FormatResult::
file .fit

Fig. 4. Activity Diagram for the Pre-processing Phase

Modelling a Protein Structure Comparison Application on the Grid 83

[null]

Query
HashTable

:

Search
protein DB

Update
format

[found]

Query
Parsing

Similarity
analysis

FormatResult :
file .Pdb

Protein:
Target

DataStructure :
Hash Table

FormatResult
file .fit

DataStructure
List Similarity

Fig. 5. Activity Diagram for the Similarity Search Phase

Each element of LS contains a similar protein identified through its <pdbID>,
and a value representing the similarity measure S with respect to the target pro-
tein P . Without loss of generality we can order the list LS according to the simi-
larity measure, and choose the sub list Lk

S containing the first k similar proteins,
where k is a parameter provided by the user on the basis of his/her experience.
Notice that similarity search is conducted against all the proteins stored in HT,
so the parameter k is only a way to select the useful output for this phase but does
not affect complexity or efficiency of the similarity search phase. The value of k
may eventually be determined dynamically on the basis of a required minimum
similarity threshold t, i.e. we could search for the first k = k(t) similar proteins
whose similarity measure is greater than t. Finally, since similarity search is con-
ducted comparing vector-based representation of proteins, the target protein P
has to be pre-processed by a parser module. In summary, Similarity search phase
has INPUT={P, HT}, PARAMETERS={k}, OUTPUT={LK

S }.
As reported in the workflow of Figure 5, this phase starts by supplying a

target protein P= <pdbID> used to query the PDB file to obtain the secondary
structure protein information (task “Search protein”). In case the target protein
is not stored in a PDB format, the task “Update format” is responsible of deriving
the PDB information. Then, in the “Query parsing” task the file .fit is generated.
Such file is needed for the “Similarity analysis” task. Which, in fact, computes a
list of proteins sorted according to their degree of secondary structural similarity
with the target protein.

Structural Alignment. In this phase (Figure 6) a detailed similarity analysis
is performed by considering the position of atoms of target and similar proteins.
The user chooses a protein Li (i=1,...,k) from the similarity list Lk

S , then a

84 M. Cannataro et al.

Protein
selection

Search format
Pi and PT

Fit extraction
Pi and PT

SS
alignment

Rigid
transformation

Rasmol
visualization

Protein :PT
DataStructure :
List Similarity

Query Result : Pi

FormatResult
Files sec, ca,pdb

FormatResult
files .fit

DataStructure
ListAssociation

FormatResult :

coord.Atomic
superposition

Fig. 6. Activity Diagram for the Structural Alignment Phase

structural alignment between Li and the target P is performed. Next an atomic
superimposition of these two proteins, based on a rigid transformation composed
by roto-translation movements, is performed.

Finally,thissuperimpositioncanbeeventuallyvisualizedusinga3Dvisualization
tool such as Rasmol (see http://www.umass.edu/microbio/rasmol/). It should be
noted that both Li and P are visualized with respect to the same point of reference.
After visualization the user can choose another similar protein Lj, to conduct a
new Similarity analysis, or he/she can stop the process. In summary the Similarity
analysis phase has INPUT={P,Li }, OUTPUT={superimposition (P, Li)}.

As reported in the workflow of Figure 6, a protein occurring in the similarity
list is selected (task “Protein selection”) for testing its actual structural similar-
ity with the target protein on the basis of the degree of atoms overlapping. This
measure is obtained by computing the rigid transformation of the proteins that
makes their structures overlap as much as possible.

This task can be performed by analyzing not only the PDB, .sec, .ca files (task
“Files extraction”) associated to both proteins, but also an association list between
the secondary structures. This list is computed from the .fit files (obtained by
means of the task “Fit extraction”), by means of the task (“SS alignment”).

Notice that the tasks ”SS alignment” and “Files extraction” are synchronized
in a way that the “Rigid Transformation” task can be executed only after their
proper termination. Finally, the overlapping can be visualized by means of a
visualization tool, such as Rasmol.

After the application modelling phase, the workflows designed so far, stored
into the Workflow Metadata Repository of PROTEUS, are combined together
to form the overall Grid-aware PROuST application. Using the PROTEUS

Modelling a Protein Structure Comparison Application on the Grid 85

workflow-enactment service, the application is then executed on the Grid. On
the other hand, some of the designed workflows represent self-contained services
that can be reused for further applications.

5 Conclusions and Future Work

Bioinformatics applications, such as structure comparison, present complex work-
flows that involve different data sources and software components, and often re-
quire high computing power. The deployment of such applications on the Grid
can benefit from semantic modelling of both the elementary tasks and the overall
application through workflow. We described the modelling and implementation
of the PROuST structure comparison application through PROTEUS, a Grid-
based Problem Solving Environment. Detailed descriptions of PROuST phases
and related PROTEUS workflows have been presented.

Future work regards the completion of the PROTEUS workflow-enactment
service and its use to evaluate the Grid-aware PROuST application. Moreover,
PROuST workflow shows various sources of parallelism that can further benefit
of Grid deployment, such as Hash Table construction and querying, and parallel
execution of PROuST phases in a multi-user setting.

References

1. P. Baldi and S. Brunak. Bioinformatics: The Machine Learning Approach. MIT
Press, 2001.

2. M. Cannataro, C. Comito, F. Lo Schiavo, and P. Veltri. Proteus, a grid-based
problem solving environment for bioinformatics: Architecture and experiments.
IEEE Computational Intelligence Bulletin, 3(1):7–18, February 2004.

3. M. Cannataro and D. Talia. Semantic and Knowledge Grids: Building the Next-
Generation Grid. IEEE Intelligent Systems, 19(1):56–63, January-February 2004.

4. M. Comin, C. Guerra, and G. Zanotti. PROuST: A comparison method of three-
dimensional structures of proteins using indexing techniques. J. of Computational
Biology, 11:1061–1072, 2004.

5. MarlonDumasandArthurH.M. terHofstede. UMLActivityDiagramsasaWorkflow
Specification Language. UML01, Lecture Notes in Computer Science, 2185, 2001.

6. C. Ferrari, C. Guerra, and G. Zanotti. A grid-aware approach to protein structure
comparison. Jounal of. Parallel and Distributed Computing Special issue on High
Performance Bionformatics, 63, 2003.

7. NCBI-National Cancer for Biotechnology Information. Genbank dna sequences.
http://www.ncbi.nlm.nih.gov/.

8. Research Collaboratory for Structural Bioinformatics (RCSB). The protein data
bank. www.rcsb.org/pdb.

9. Global Grid Forum. Life science grid - research group.
http://www.ggf.org/7 APM/LSG b.htm.

10. I.FosterandC.Kesselman.TheGrid:BlueprintforaFutureComputingInfrastructure.
Morgan Kaufmann Publishers, 1999.

11. C. Guerra and S. Istrail. Mathematical Methods for Protein Structure Analysis and
Design. LNBI, Springer, 2000.

12. University of Manchester. Mygrid. http://mygrid.man.ac.uk/.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 86 – 98, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Grid Services Complemented by Domain Ontology
Supporting Biomedical Community

Maja Hadzic and Elizabeth Chang

Curtin University of Technology, School of Information Systems,
GPO Box U1987 Perth,

Western Australia 6845, Australia
{hadzicm, change}@cbs.curtin.edu.au

Abstract. This paper describes the increasing role of ontologies in the context
of Grid computing for obtaining, comparing and analyzing distributed hetero-
geneous scientific data. In the communities of people committed to a common
goal, the management of resources and services becomes very important. We
chose the application domain of human disease research and control. A charac-
teristic of the domain is that trusted databases exist but their schemas are often
poorly or not documented. The network of biomedical databases forms a loose
federation of autonomous, distributed, heterogeneous data repositories ripe for
information integration. Grid services will provide a dynamic way to use re-
sources in such a large distributed scientific environment while the use of on-
tology enables the system to carryout reasoning at 3 levels: a) available infor-
mation in all Bio-Databases (Grid nodes) worldwide, b) reasoning about the
retrievable information from each node, c) reasoning about the retrieved infor-
mation and presenting it in a meaningful format for users. We adopted the on-
tology design methodology of DOGMA and developed Generic Human Disease
Ontology (GenDO) that contains common general information regarding human
diseases. The information is represented in 4 “dimensions”: (a) disease types,
(b) causes (c) symptoms and (d) treatments. We illustrate how this GenDO
helps to produce Specific Human Disease Ontologies (SpeDO) on request. We
show how the combination of two different but complementary techniques,
namely Grid computing and ontology, results in a dynamic and intelligent in-
formation system. The two approaches together, being complementary, enable
the system as a whole.

1 Introduction

Recent developments in integrating parallel and distributed computing, combined
with improvements in overall network bandwidth have made it possible to add a new
dimension to distributed computing: the Grid. Grid offers data management facilities
and access to distributed resources by providing cross-institutional integration of in-
formation and resources in an environment. Grid means resource integration and col-
laboration [13].

Grid Services Complemented by Domain Ontology Supporting Biomedical Community 87

The biomedical community is a distributed one and involves the storage and analy-
sis of experimental and observational data. A large body of knowledge has become
available through the Internet. The information sources have complete autonomy and
they are continually extending their content. Also, each area of biomedical research
generates its own databases. In this community, sharing of information inside an area
as well as between different research areas is essential and data from one source often
must be combined with data from other sources to give users the information they de-
sire. This network of biomedical databases forms a loose federation of autonomous,
distributed, heterogeneous data repositories ripe for information integration.

The systematic growth of research efforts in biomedicine resulted in vast amounts
of observational, experimental and theoretical data being scattered around the world.
Two fundamental challenges in biomedical science are the management of the avail-
able information and the extraction of useful information from large data sets. There
is also a need for cooperation of multi-disciplinary teams located at geographically
dispersed sites on a single experimental level as well as on a higher level. Sometimes,
on a higher level, information from one area in biomedicine must be linked with in-
formation from other areas (e.g. to link information about genetic causes with the in-
formation about environmental causes in order to get an overall picture of all causes
responsible for a particular human disease) in order to form a network of evidence.
We support a collaboratory effort in which biomedical scientists and researchers may
utilize distributed computing resources to discover, access, select, and analyze data
from information resources worldwide.

Classical techniques and methodologies are largely inadequate because of the in-
herently autonomous and heterogeneous nature of the information resources, which
forces applications to share data, respectively services, often without prior knowledge
of their structure respectively functionality.

Grid services will provide a dynamic way to use resources in such a large distrib-
uted scientific environment. It will constitute a distributed, collaborative, and high-
volume computing environment that poses particular new challenges to the efficient
and effective design of data and transactions. Another major advantage Grid offers is
the freedom of information resources. In a Grid environment the resources may come
and go, may belong to different institutions, have different usage policies and pose
different requirements on acceptable requests. Grid applications, at the same time,
may have different constraints that can only be satisfied by certain types of resources
with specific capabilities.

Computer based ontologies may be seen as shared formal conceptualization of do-
main knowledge and therefore constitute an essential resource for enabling interop-
eration in an open environment such as the Web on the Grid. We illustrate how on-
tologies can be developed for the knowledge domain of biomedical and bio-
engineering research. We chose the application domain of human disease research
and control since it necessarily involves resources of medical, genetic, environmental
and treatment data. A characteristic of the domain is that trusted databases exist but
their schemas are often poorly or not documented for outsiders, and explicit agree-
ment about their contents is therefore rare.

In a Grid environment, information structured in ontologies may become crucial to
many of the operations necessary to obtain and analyze desired data. For example, a
user may want to make a collection of data files regarding only symptoms of a human

88 M. Hadzic and E. Chang

disease, but the user may not know the physical location, the name of each individual
file etc. At a higher level of interoperability, shared ontologies between different sys-
tems, and mappings of a domain ontology onto a service, are important components
of a service-based open architecture and re-use of tools on a semantic basis.

In the Section 2 (Related Work), we discuss related work. In the Section 3 (Ontol-
ogy Data Repository on Grid for Human Disease Study) we describe extraction of the
relevant information used to build the ontology. Section 4 (Principles of Building Ge-
neric Human Disease Ontology) describes the four main branches of Generic Human
Disease Ontology made by using DOGMA Modeler. Section 5 (From Generic to Spe-
cific Human Disease Ontologies) illustrates on the examples the ontology as a tool for
physicians (section 5.1.) and for researchers (section 5.2.). In the Section 6 (Compari-
sons, Discussion and Conclusions) we discuss the combination of the two comple-
mentary techniques and give final remarks.

2 Related Work

Ontology based bioinformatic work includes the Riboweb ontology[1], the Gene On-
tology (GO) [6] and the TAMBIS Ontology while L&C’s LinkBase® and UMLS are
designed to support human disease studies.

The TAMBIS Ontology, Transparent Access to Multiple Bioinformatics Informa-
tion Sources [15], uses ontology to enable biologists to ask questions over multiple
external databases using a common query interface. The RiboWeb Ontology can be
helpful for scientists studying ribosome related diseases, but it doesn’t support study
of other much more numerous diseases. Gene Ontology provides us with information
about all genes within an organism and the TAMBIS Ontology represents all nucleic
acids and proteins, but scientists studying a particular disease are only interested in
genes and proteins responsible for that particular disease.

LinKBase® by L&C incorporates recent results involving a very large commer-
cially available formal domain ontology. It is reported [12] to currently contain over
5.000.000 knowledge entities of various types: concepts, relationships, terms etc.
These entities represent medicine in a way that can be understood by algorithms. Con-
sistency is maintained through a description-logic based knowledge system called
LinKFactory®.

The Unified Medical Language System (UMLS) [3] project develops and distrib-
utes multi-purpose, electronic "Knowledge Sources" and associated lexical programs.
System developers can use the UMLS products to enhance their applications in sys-
tems focused on patient data, digital libraries, Web and bibliographic retrieval, natural
language processing, and decision support. Researchers will find the UMLS products
useful in investigating knowledge representation and retrieval questions.

None of the above mentioned ontologies make use of Grid services to access and
retrieve the significant information. In this paper, we show how the combination of
the Grid computing and ontology can be very useful for the biomedical community.

The Grid is proposed as the new distributed computing. Originally conceived as a
means of sharing resources on demand, the Grid’s vision and reach has rapidly
evolved to intelligent middleware for flexible, secure, coordinated resource sharing
among dynamic collections of individuals, institutions, and resources. These kinds of

Grid Services Complemented by Domain Ontology Supporting Biomedical Community 89

services enable our system to make Specific Human Disease Ontologies on request.
Inter-community technology exchange and inter-disciplinary research can generate
inspirational innovations. The inter-community and inter-disciplinary information ex-
change is important for us when constructing the Generic Human Disease Ontologies
in 4 “dimensions”. For example, medical researchers examining causes of a specific
human disease need to exchange the information with medical researchers working on
drug design to prevent or cure that particular disease. The Grid and Semantic Web are
now drawing closer together through Web Services and have a new off-spring “the
Semantic Grid”, the application of knowledge technologies from the Semantic Web to
both Grid applications and deep Grid infrastructure [13].

MyGrid is a project targeted at developing open source high-level middleware to
support personalised in silico experiments in biology on a Grid. A number of BioGrid
projects are underway, including the Asia Pacific BioGrid, the North Carolina Bi-
oGrid, the Canadian BioGrid, the EUROGRID project and the Biomedical Informat-
ics Research Network. MyGrid is building services for integration such as resource
discovery, workflow enactment and distributed query processing. The target users of
myGrid are tool and service providers who build applications for a community of bi-
ologists. Early prototypes of myGrid services were developed and tested with use
cases based on the functional analysis of clusters of proteins, identified in a microar-
ray study of genes showing circadian rhythms in Drosophila melanogaster (fruit fly).
Following this, a distributed system has been developed to meet the requirements of
researchers studying the genetics of Graves’ disease [16]. On the contrary, our intelli-
gent computer system is constructed that way so that it supports research, study and
control of all human disease.

3 Ontology Data Repository on Grid for Human Disease Studies

Central to the Grid concept are communities of people committed to a common in-
formation-dependent goal. Medical researchers consist of teams with heterogeneous
members with different capabilities. There does not exists a unique organization that
has all the required resources or skills and team members to be distributed around the
globe. Hence, the Grid should enable resources sharing and usage co-ordination in
dynamic, virtual, multi-institutional organizations.

Grid computing is not only about accessing computing resources, but more about
accessing remote data sources like stored medical and biological information in large
quantities. But it would be very time consuming to figure out for each database one
may need, what is in it, what is the value of the information, where it fits into the
whole knowledge world and how one can access it. This is where ontologies are
needed: a way to capture and present in the computer, knowledge all people in a cer-
tain community share. For instance, one could want to combine a medical data source
in Europe with a biological data source in China in order to perform an analysis.
Firstly, we need Grid services to provide a dynamic way to use resources and services
in such a large distributed scientific environment. Secondly, we need domain ontol-
ogy to describe data and resources in a way that is understandable and usable by the
target community.

90 M. Hadzic and E. Chang

Fig. 1. Information from different databases worldwide used to create Generic Disease Ontol-
ogy. Specific Ontologies such as Psychiatric Disease or SARS Ontology, derived from Generic
Disease Ontology

Ontologies can effectively integrate distributed world wide research in the area of
disease by aligning and merging relevant information from publication and medical
databases, DNA and protein databases, research institutes, health departments, hospi-
tals etc. [5]. Grid middleware can provide the required distributed collaborative plat-
form as well as easy access to resources. Another major advantage of using the Grid
is that it respects complete autonomy of the existing ontology nodes. Each of the ex-
isting nodes can withdraw or join the Grid whenever it is necessary. This is very im-
portant when generating on request Specific Human Disease Ontologies as we show
in Section 5.

A grid-computing-based middleware system helps extracting relevant available in-
formation related to disease research from around the world . After analysis, combina-
tion and interpretation of the information according to an agreed structured represen-
tation of domain knowledge by using ontology, the result is presented in a way that
makes it easier for the user to have an overview of the up-to-date knowledge about a
specific disorder. Generic and Specific Human Disease Ontologies (see models in Fig.
1.) make it possible for researchers to carry out integrated studies involving in general
multiple factors to be considered. The proposed solution provides a real-time informa-
tion resource that assists researchers and physicians to analyze the different factors
and the relationships between them as well as different types of diseases. Figure 1
shows a pictorial presentation of the Human Disease Ontologies deployed on a Com-
puting Grid.

Grid Services Complemented by Domain Ontology Supporting Biomedical Community 91

4 Principles of Building Generic Human Disease Ontology

A body of formally represented knowledge is based on conceptualisation. Conceptu-
alisation is an abstract, simplified view of the world that we wish to represent for
some purpose, usually involving computers. It consists of a set of objects, concepts
and other entities about which knowledge is being expressed (often called the uni-
verse of discourse) and of relationships that hold among them. Every formal knowl-
edge model is committed to some conceptualisation, implicitly or explicitly. An ex-
plicit specification of this agreed conceptualisation is called an ontology [7]. In the
sequel we shall adopt the DOGMA formalism [11], [14] for the description and ter-
minology involving ontologies.

Ontological commitments are formal agreements (expressed in DOGMA as views,
rules, and constraints) to use the shared vocabulary in coherent and consistent man-
ner. Shared vocabulary is different for different knowledge domains. Our knowledge
domain is going to have its own vocabulary written in an ontological lexicon. An on-
tology base consists of lexons, expressing facts between terms. Terms are often organ-
ized hierarchically in taxonomy. Facts in DOGMA are always true only within a con-
text. A lexicon L consists of a finite set of semantically meaningful concepts, denoted
by C and a finite set of Relationships R (L = C ∪ R). An ontology is a formal specifi-
cation of a shared conceptualization, that is, the knowledge structure that describes
the semantics of an information source by commitment to a lexicon L.

The conceptual framework of our GenDO methodology and prototype will be
based on such a formal theory of ontology. Indeed, we will extract relevant informa-
tion from publication and medical databases, DNA and protein databases, research in-
stitutes, health departments, hospitals etc. Upon the analysis and combination of the

Fig. 2. Generic Human Disease Ontology and its four main subontologies: type, phenotype
(symptoms), cause and treatment

92 M. Hadzic and E. Chang

information, the result will be presented in a way that makes it easier for the user to
have an overview of the up-to-date knowledge about a specific disorder. Use of on-
tologies provides us with a more controlled and systematic way to perform informa-
tion retrieval. Moreover, the inherited organisation of ontologies adds taxonomical
context to search results, making it easier for the researcher to spot conceptual rela-
tionships in data. The latter fact is important for instance in the case of complex hu-
man disorders where one looks for relationships between different factors that are si-
multaneously responsible for each of the many types of disorders.

The GenDO has four main branches: (1) types, describing different types of a dis-
order; (2) causes responsible for that disorder which can be environmental and/or ge-
netical; (3) phenotype, describing symptoms of a disease; (4) treatments, giving an
overview of all treatments possible for that particular disease as well as treatments ef-
ficiency. This ontology helps to produce SpeDO as illustrated in Section 5. In the Fig.
2. we show four main branches of the GHDO. Terms within GHDO are much more
numerous than shown and are validated for existence against concepts from a bio-
medical lexicon such as UMLS Metathesaurus [3].

Consider a vocabulary V = (T, R) where T is a set of terms denoting concepts, and
R is a set of relationship names. As a simple example, we develop a small generic on-
tology representing the main concepts, identified in a given (implicit) context. Let T =
{disease, type, subtype, sub-subtype, phenotype, treatment, drug therapy, chemother-
apy, physiotherapy, surgery, psychotherapy, cause, genotype, gene, gene complex,
DNA region of interest, environment, stress, climate, family conditions, drugs, micro-
organism, bacteria, virus} that represent the lexicon of user’s world of diseases, and
R = {has, isof, isa, is caused by, is responsible for, is cured by, cures, shows, charac-
terizes} that represent relationships (roles) for this domain. The DOGMA Modeler
uses ORM [8] notation to represent relationships and commitments such as “each dis-
ease is caused by at least one cause” and “each disease shows at least one phenotype”.

The ontology explains that a disease may have (1) different types which also may
be further divided into subtypes etc. Each disease is caused by (2) cause(s) which can
be genetic (genotype) or environmental. Genetic causes can be a mutated gene, a
complex of genes or a region in the DNA sequence that potentially contains a gene re-
sponsible for the disease and needs to be further examined. Environmental causes can
be stress, climate, drugs or family conditions. For each disease, there is (3) corre-
sponding phenotype namely, observable characteristics of an ill individual and (4)
treatments possible for the disorder that can be drug therapy, chemotherapy, surgery,
psychotherapy or physiotherapy.

5 From Generic to Specific Human Disease Ontologies

By combining grid services with a prototype of Generic Human Disease Ontology
(GenDO), we extract and align the relevant information from publication and medical
databases, DNA and protein databases, research institutes, health departments, hospi-
tals etc. The Specific Human Disease Ontologies (SpeDOs) are specified and gener-
ated when a user queries the system. The GenDO stands here central as a link be-

Grid Services Complemented by Domain Ontology Supporting Biomedical Community 93

tween multiple heterogeneous information resources on one side and the users on the
other side. With its four main branches (types, causes, phenotypes and treatments of a
disorder) it serves as a template. Grid services then “feed” applications committed to
this GenDO ontology with relevant data required by a user which results in SpeDOs.

The source information covers different areas of interest with respect to human
diseases in order to allow different user categories, each having specific intentions, to
query the system. This has been illustrated on the following examples. The examples
are intended to show typical, common problems researchers and physicians encoun-
ter. Researchers are constantly searching for and adding more information to the al-
ready existing pool of knowledge regarding a particular disorder. Physicians are di-
rectly in contact with patients and are using all significant information to help and
treat the patients. Researchers and physicians are strongly connected because they are
working towards the same goal, but on different knowledge levels.

5.1 Ontology as Support Tool for Physicians

If a medical professional queries the system, she/he will mainly be interested in two
of the four components of our system, namely symptoms and possible treatments of a
particular disorder. There are some exceptions to this rule, such as in the next use case.

Use case one: Physician cannot identify the disease. A physician may have a pa-
tient showing some symptoms of a disease but he may not be able to say what kind of
disease it is. At this stage, it is recommended to keep three components involved in
the search (symptoms (phenotype), causes and treatments). In this case, the derived
SpeDOs have the “phenotype”, “cause” and “treatment” branches.

By entering the symptoms into the system, she/he may be able to retrieve the in-
formation regarding that disease. It is also possible that different diseases are showing
the same or similar symptoms, so that the physician retrieves more than one SpeDO
(in Fig. 3. we show two different SpeDOs). In that case, it may become useful to look
for some significance in the causes of the disorders.

For example, in case of disease_1, gene_1 is mutated and thus causes this disorder.
And disease_2 is caused by mutation of gene_2. The physician can do the screening
of the patients DNA to check if gene_1 or gene_2 is mutated. If mutation found in
gene_1, the patient has disease_1 and if gene_2 mutated the patient suffers from dis-
ease_2. Only when the patient is correctly diagnosed, the physician may consider pos-
sible treatments for the patient. Our information system therefore also reduces the risk
of misdiagnosis.

Use case two: Physician can identify the disease and wants to consider possible
treatments. It is common that there is more than one (drug) treatments possible for a
particular disease (see Fig. 4.). A physician will wish to look at all the options possi-
ble before choosing one. Choosing medication is also a personal thing because not all
the people respond in the same way to same medication. At this point a medical pro-
fessional might for instance consult our ontology-based information system to do a
one-component search (treatments). In this case, the derived Specific Ontology has
only the “treatment” branch.

94 M. Hadzic and E. Chang

disease

{ 'disease1',
 'disease 2 ' }

has /is of

phenoty pe

cause

has

/is of

genoty pe

gene

{ 'gene 1 ',
 'gene 2' }

treatment

drugtherapy

has

/is of

drug

{ 'drug 1',
 'drug 2' }

Fig. 3. Two different diseases caused by mutations of different genes and treated by different
drugs showing same symptoms

disease

treatment

drugtherapy

has

/is of

drug

{ 'drug 1',
 'drug 2',
 'drug 3' }

source

{ 'herbal',
 's ynthetic' } activ e ingridient

effectiv ity

{ '0-100%' }

sideeffect

{ 'nausea',
 'headache',
 'depres s ion',
 'weakness ',
 'low energy levels ' }

drug interactions

{ 'not effective with m akrolide antibiotics',
 'unwanted effects with MAO inhibitors ',
 'enhance effect of other drugs ' }

Fig. 4. Different drugs target same disease

5.2 Ontologies as Tools for Researchers

When a biomedical researcher uses our system, she/he will in general mainly be inter-
ested in one specific of the four possible components of our system, namely causes or
treatments depending of her/his research area. Researcher working on drug discovery

Grid Services Complemented by Domain Ontology Supporting Biomedical Community 95

would be more interested in the “treatment” branch. We show another example where
the derived Specific Human Disease Ontology has only the “cause” branch.

disease

{ 'm anic depres sion' }

cause

has

/is of

genoty pe

DN A region

of interest

{ '2p13q-16',
 '10q21-q24',
 '12q23-q24',
 '17q11-q12',
 'Xq24-q26' }

gene

{ 'GRK3' }

protein coded

{ 'G protein receptor kinase 3' } location

{ '22q11' }

effectiv ity

{ '10%' }

Fig. 5. Genetical causes of manic-depression, current research

Use Case Three: Researcher examines possible causes of a disorder. Often not all
the causes responsible for a particular disorder are known, e.g. in the case of manic-
depression.

By querying our system and getting back significant information systematically
represented (see Fig. 5.), the researcher is able to identify some regions of interest
in the DNA sequence such as regions 2p13-16, 10q21-24, 12q23-24, 17q11-12 and
Xq24-26 on chromosomes 2, 10, 12, 17 and X respectively [2], [4], [9], [10]. Those
regions need to be further examined in order to find a gene and a mutation inside
that gene.

If a new gene is found on one of the already identified DNA regions of interest,
our model will now have four instead of five instances of the term “DNA region of
interest” and one more instance of the term “gene” (see Fig. 6.). Because of the
length of DNA sequence it obviously is much easier for a researcher to target a spe-
cific area of a chromosome such as 2p13-16 than the whole chromosome 2. Further
research, may allow her/him to narrow down the region of interest to, for example
2p14-15. Because of the agreed semantics in a shared ontology it will be easier for
the next person to continue the research in the same direction and possibly to locate
the gene of interest.

This aspect of cooperation between different teams increases productivity by sav-
ing time and research resources.

96 M. Hadzic and E. Chang

disease

{ 'm anic depression' }

cause

has

/is of

genoty pe

DN A region

of interest

{ '10q21-q24',
 '12q23-q24',
 '17q11-q12',
 'Xq24-q26' }

gene

{ 'GRK3',
 'gene X' }

protein coded

{ 'G protein receptor kinas e 3',
 'protein X' }

location

{ '22q11',
 '2p13-p16' }

effectiv ity

{ '10%' }

Fig. 6. Genetical causes of manic-depression, future research if gene of interest found on
chromosome 2

6 Comparisons, Discussion and Conclusions

The development of an integrated Ontology deployed on Grid for the purpose of ac-
cessing, retrieving and representing the active knowledge about human disorders has
a number of obvious but quite important advantages:

• it supports the work of scientists in gathering information on highly specific re-
search topics of human disorders, and allows users on a world-wide basis to in-
telligently access new scientific information much more quickly;

• shared knowledge improves research efficiency and effectiveness, as it helps (a)
to avoid unnecessary redundancy in doing the same experiments, such as the
examination of the same region of a DNA sequence, and (b) to direct future
work, such as the determination which part of DNA sequence needs to be fur-
ther examined in order to find the gene responsible for a disease;

• it forms the basis of interoperation, by allowing distributed but autonomous and
heterogeneous resources to function in a world-wide cooperative environment:
this makes it possible to split effectively a big task between different research
teams;

• constructing the data patterns combining different genetic and environmental
causes and different disease types, will facilitate the sorting out of the exact
combinations of the genetic and environmental factors involved as well as their
individual influences on a specific complex disease type such as e.g. depres-
sion, thereby assisting medical professionals to diagnose, treat and possibly
prevent the disorder.

Grid Services Complemented by Domain Ontology Supporting Biomedical Community 97

The four “dimensions” (phenotype, cause, treatment and type) are built for a dif-
ferent purpose and are orthogonal to each other. The “Types” sub-ontology is more a
classifying ontology and is strongly hierarchically supported. It does not provide a
user with much scientific information. This ontology is based on classification. The
“Phenotype” sub-ontology is more descriptive than the others and is based on obser-
vation and diagnosing characteristics of ill individual. The “Cause” sub-ontology is
providing a user with scientifically proven facts and is strongly based on scientific re-
search. The “Treatment” sub-ontology is a combination of classifying and research
ontology. Modeling available treatments is research work but, for example all the dis-
covered drugs can be further hierarchically classified. All four “dimensions” are dif-
ferent from each other and each “dimension” is unique. But jointly they give an over-
all picture and a good overview of knowledge on a human disorder.

In this paper we show how the combination of two different but complementary
techniques, namely Grid computing and ontology, results in a dynamic and intelligent
information system. This is especially important in the communities of people com-
mitted to a common goal such as medical researchers and physicians. The Grid en-
ables resources sharing and usage co-ordination in dynamic, virtual, multi-
institutional organizations. The ontologies provide a way to describe data and re-
sources in a way that is understandable and usable by the target community. The two
approaches together, being complementary, enable the system as a whole.

Acknowledgments

This paper has been finalized during Maja Hadzic’s research visit at the VUB STAR-
Lab in Brussels. The authors would like to thank Prof. Robert Meersman, Sven Van
Acker, Andriy Lisovoy and other research team members of VUB STARLab for help-
ful discussions and useful suggestions.

References

1. Altman R., Bada M., Chai X.J., Whirl Carillo M., Chen R.O., Abernethy N.F., “Riboweb:
An Ontology Based System for Collaborative Molecular Biology”, IEEE Intelligent Sys-
tems, vol. 14, no. 5, pp.68-76, 1999.

2. Barrett T.B., Hauger R.L., Kennedy J.L., Sadovnick A.D., Remick R.A., Keck P.E.,
McElroy S.L., Alexander M., Shaw S.H., Kelsoe J.R., “Evidence that a single nucleotide
polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with
bipolar disorder”, Molecular Psychiatry, vol. 8, pp.546-557, 2003.

3. Bodenreider O., “The Unified Medical language System (UMLS): integrating biomedical
terminology”, Nucleic Acids Res, vol. 32, no. 1, pp.267-270, 2004.

4. Craddock N, Jones I., “Molecular genetics of bipolar disorder”, The British Journal of
Psychiatry, vol. 178, no. 41, pp.128-133, 2001.

5. Deray T., Verheyden P., “Towards a semantic integration of medical relational databases
by using ontologies: a case study”, Proceedings of the ISMIS 99 Conference, Lecture
Notes in Computer Science vol. 1609, Springer-Verlag Heidelberg, pp.30-45, 1999.

6. Gene Ontology Consortium, “Gene Ontology: tool for the unification of biology”, Nat
Genet, vol. 25, pp.25-29, 2002.

98 M. Hadzic and E. Chang

7. Gruber, T. R., “A Translation Approach to Portable Ontology Specifications”, Knowledge
Acquisition, vol. 5, no. 2, pp. 199-220, 1993.

8. Halpin T.: Information modeling and relational databases, 3rd edition, Morgan-Kaufmann
(2001).

9. Hattori E., Liu C., Badner J.A., Bonner T.I., Christian S.L., Maheshwari M., Detera-
Wadleigh S.D., Gibbs R.A., Gershon E.S., “Polymorphisms at the G72/G30 gene locus, on
13q33, are associated with bipolar disorder in two independent pedigree series”, American
Journal of Human Genetics, vol. 72, no. 5, pp.1131-1140, 2003.

10. Liu J., Juo S.H., Dewan A., Grunn A., Tong X., Brito M., Park N., Loth J.E., Kanyas K.,
Lerer B., Endicott J., Penchaszadeh G., Knowles J.A., Ott J., Gilliam T.C., Baron M.,
“Evidence for a putative bipolar disorder locus on 2p13-16 and other potential loci on
4q31, 7q34, 8q13, 9q31, 10q21-24, 13q32, 14q21 and 17q11-12”, Mol Psychiatry, vol. 8,
no. 3, pp. 333-342, 2003.

11. Meersman R., “Semantic Ontology Tools in Information System Design”, Proceedings of
the ISMIS 99 Conference, Lecture Notes in Computer Science, vol. 1609, Springer-Verlag
Heidelberg, pp.30-45, 1999.

12. Montyne Frank, “The importance of formal ontologies: A case study in occupational
health”, Proceedings of the OES-SEO 2001 Rome Workshop, Luiss Publications, 2001.

13. Carole Goble, “The Grid Needs you! Enlist Now”, Confederated International Confer-
ences DOA, CoopIS and ODBASE 2002 Proceedings. Lecture Notes in Computer Science,
Springer-Verlag Heidelberg, ISBN 3-540-20498-9, pp.589-600, 2003.

14. Spyns P., Meersman R., Jarrar M., “Data modelling versus Ontology engineering”,
SIGMOD Record, vol. 31, no. 4, pp.12-17, 2002.

15. Stevens R., Baker P., Bechhofer S., Ng G., Jacoby A., Paton N.W., Goble C.A., and Brass
A., “TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources”, Bio-
informatics, vol. 16, no. 2, pp.184-186, 2002.

16. Stevens R. D., Robinson A. J. and Goble C. A., “MyGrid: personalised bioinformatics on
the information grid”, Bioinformatics, vol.19, pp.302–304, 2003.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 99 – 107, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Generic Architecture for Sensor Data Integration
with the Grid

Jan Humble1, Chris Greenhalgh1, Alastair Hamsphire1, Henk L. Muller2,
and Stefan Rennick Egglestone1

1 University of Nottingham, Department of Computer Science
{jch, cmg, axh, sre}@cs.nott.ac.uk

2 University of Bristol, Department of Computer Science
henkm@cs.bris.ac.uk

Abstract. This paper describes the design and implementation of a model of
how to integrate sensors and devices into a Grid infrastructure. We describe its
proxy-based approach, the port-type requirements and the set of tools imple-
mented to facilitate configuration of experimental scenarios. Two real world
devices, a wearable medical jacket and an Antarctic lake probe, deployed out in
the field using this architecture are described, along with their relevance in sci-
entific research.

1 Introduction

The Grid platform provides great potential for delivering tools for computation, man-
agement of resources, and data storage for scientists [1, 2]. A substantial amount of
funding has concentrated on the requirements for post-processing of gathered scien-
tific data. Our interest, however, lies beyond the lab and its suite of software tools.
We wish to accommodate the integration of data collected from remotely located
hardware sensors and devices into the Grid infrastructure and the Open Grid Services
Architecture (OGSA) [3] as we know it today.

Experimental scenarios often require a contextual analysis of the gathered data,
usually from a range of sensors attached to a particular device. Correlation of the data
from different sources and sensors (e.g. time, location and activity of a medical sub-
ject) is useful in explaining patterns and a requirement of both clinicians and “in the
field” scientists. We wish to facilitate the management of such experimental scenar-
ios and provide easy access to historical or real-time data for further analysis. In some
cases it becomes necessary not only to make Grid facilities available to remote users,
but also to allow users of Grid services to directly interact with remote devices (e.g.
remote configuration).

Our architecture, constructed using the Globus Toolkit 3 [4], and a set of tools fa-
cilitate the publishing and processing of data by scientists without the need of exten-
sive knowledge of Grid-based development. The devices and sensors that we are
dealing with typically have limited computational power, limited memory and limited
network connectivity (e.g. intermittent or occasional). As such, they are not suitable
for directly hosting Grid Services given current technologies. However, in some cases
they are capable of hosting Grid Services directly, while in others we might anticipate

100 J. Humble et al.

improvements in underlying technologies that would make this possible. Our proxy-
based approach will nonetheless guarantee communication with a device representa-
tive at all times, providing notification on current device and connection state.

Two real world sensor devices were already available as part of focused research by
collaborating institutions: the CyberJacket [5, 6] from Bristol University, which collects
data from patient life signals and ambient data, and the eScience Antarctic lake probe
[7] from the University of Nottingham, which records data from a lake in the Antarctic.
In detailing these, we will demonstrate how they were integrated into the sensor archi-
tecture and their role in future research together with Grid technologies.

2 Background

A common and generic architecture for monitoring devices is motivated by the pro-
lific and long-standing research programmes in both health care and environmental
research.

In the UK, there has been a rising trend in Telemedicine and Telecare clinical trials
such as those carried out by the Oxford centre for e-health [8], the Biomedical Infor-
matics group at Nottingham University [9] and the Glasgow Royal Infirmary and
Glasgow University [10]. These required custom built sensors and infrastructures
despite being of relatively small scale.

Our research partners have a long-standing interest in the recording of physiologi-
cal data for clinical diagnosis [11, 12, 13, 14, 15] through sophisticated bio-signal
processing strategies [16, 17]. We also have extensive experience in wearable de-
vices and means of extracting, archiving and manipulating context driven data. Com-
bining the various interests from the Science community and wireless networking is a
UK government funded project entitled “Grid Based Medical Devices for Everyday
Health” [13]. It aims to create tools and exercise strategies for unobtrusive medical
monitoring.

Professor Laybourn-Parry and her colleagues have been studying the ecology of
freshwater Antarctic lakes for 12 years and in particular the cycling of carbon through
the ecosystem [7]. It is a well preserved and unique of environment and an im-
mensely valuable resource of information, but its isolated location and harsh envi-
ronment make it very difficult to study. A monitoring device with a range of sensors
has taken over most of the labour-intensive manual work of the past; however work
still needs to be done on exposing the data to the emerging Grid scientific tools for the
scientists “back home”.

3 Architecture

Our approach is, wherever possible, to make devices and sensors available on the
Grid as if they were first class Grid Services. To this end we have devised a proxy-
based approach and defined two new application-independent port types: one for a
generic sensor, and one for a generic device (which is assumed to host a number of
sensors). These port types can be supported directly by sensors and devices of suffi-
cient capability and reliability of communication. However, all of the devices and

 A Generic Architecture for Sensor Data Integration with the Grid 101

sensors that we are working with at the moment depend on proxy Grid Services to
implement these interfaces on their behalf. The – low capability and/or intermittently
connected – devices then communicate with their respective proxies using whatever
protocol is appropriate, as and when communication channels are available.

3.1 Device and Sensor Proxies

In our architecture, device proxies are used to expose sensing devices as Grid services
and sensor proxies are used to expose individual sensors as Grid services. A physical
sensing device may have several individual sensors attached to it. To model this, a
device proxy is therefore a service group (which is a standard OGSI service grouping
interface), with a number of sensor proxies as service group entries. This allows
client applications to perform operations on the device as a whole (e.g. to configure
the device) or to interact with individual sensors (e.g. to collect the latest data).

To expose a physical device and its sensors as Grid services, a client (which could
be the device itself) interacts with a DeviceProxyFacoryService, passing it an XML
configuration file. The file specifies the initial configuration of the device and its
sensors. The DeviceProxyFactoryService creates a DeviceProxyService instance,
which in turn creates a SensorProxyService instance for each physical sensor speci-
fied in the configuration file (see figure 1). This factory idiom is typical for OGSI.

A client application is able to contact the device proxy to retrieve, among other
things, a list of available sensors. The client is then able to contact some or all of the
sensors to, for example, retrieve the latest readings. Sensor proxies can also provide
other methods to interact with or reconfigure the physical sensor (such as changing
the sampling rate of the sensor or monitoring battery life).

Sensor data produced by a physical sensor is sent to an instance of a sensor proxy
service, where it is stored until downloaded or discarded. The duration for which the
data is stored at the proxy is determined by a measurement discard policy dependent
on the sensor. For example, because one of our portable devices in the wearable
medical devices project has limited memory, stored data is discarded regularly. Stor-
age of data at the proxy is only intended as temporary storage.

Retrieve
sensor data

Configure
sensor

Configure
device

Physical Sensing Device

 Physical
sensors

Device Proxy Service
(Service Group)

 Sensor Proxy
Service (Service

Group Entry)

Configure
sensor
Deliver data

Client

Fig. 1. Representing sensing devices as Grid devices

The sensor proxy stores an internal list of all un-discarded sensor data alongside a
sequence number. Client applications are able to request a subset of the currently
held sensor data (bound by min and max sequence number values), by requesting the
MeasurementByCountQueryMinMax service data element (a dynamic property of the

102 J. Humble et al.

sensor service interface). Measurements returned are represented in XSIL format [19]
in compliance with standardized databases, but with some straightforward modifica-
tions. A typical output might look like this …

<Table>
<ColumnName=”wind speed” Type=”float” Unit=”ms-1”/>
<Column Name=”wind direction” Type=”float”/>
<Stream Type=”Local” Delimeter=”,”>

10, 23
12, 45

</Stream>
</Table>

Different kinds of sensors may take measurements at widely varying rates, and
each measurement may represent differing quantities of data. A measurement
publishing policy allows the way in which the sensor reveals (publishes) new meas-
urements to be controlled. For example, a very rapidly sampling sensor might be
configured to announce new measurements no more than 5 times per second (even if
it is taking and making available 5000 measurements during this period).

3.2 Managing Trial Scenarios

We use an application called a trial manager to pump data from the proxies into a
persistent database. The user is presented with a list of devices with available sen-
sors, and selects sensors to store data from. The trial manager uses the database Grid
interface to configure the database to store data from the sensors, and a sensor data
pump is then instantiated to deliver data produced by the sensor to the database.

The sensor data pump registers for notification of changes in the Measurement-
Counter service data element in the proxy of the sensor for which it has been instanti-
ated (this property counts the total number of measurements made by that sensor).
The notification interface and style are again typical of OGSI. When notified the data
pump fetches new data in the proxy’s measurement queue and stores it in the data-
base. For sensors with a high sampling rate, it can register for a notification after a
number of new items of data, and can then retrieve the last posted items of data using
the MeasurementByCountQueryMinMax service data element already described (see
figure 2).

Store
data

Retrieve data
(min=retrieved,
max=counter)

Deliver
notification
(counter)

Register for
notifications

Database
Service

Sensor Data
Pump

Sensor Proxy Service

MeasurementCounter SDE

MeasurementByCountQueryMinMax SDE

Other SDE ...

Measurements
retrieved
counter

Fig. 2. Transferring sensor data to a database

 A Generic Architecture for Sensor Data Integration with the Grid 103

Once data is stored in the database, methods on its Grid service interface can be
used to access data and metadata. These include:

• getListOfDevices(): returns a list of device Ids stored in the database.
• getListOfSensorsPerDevice(deviceID): returns a list of sensor Ids for sensors at-

tached to a device specified by a given device Id.
• queryBySensorIDandExpression(sensorID, where): this method returns an XSIL

string containing sensor readings for the sensor specified by sensorID and con-
forming to the given where clause. For example, the where clause might indicate a
date range, between which readings should be returned.

Other convenience methods are available to, for example, return data from several
sensors of the same type. Further, the interface could easily be extended to provide
more advanced querying mechanisms.

JavaPhone
Blood sugar

meter

Data logger
PAR sensor

PAR sensor

Other sensors

Cyberjacket
(Bitsy)

ECG sensor

accelerometer

GPS receiver

9-wire bus
(pluggable)

JavaPhone proxy

Blood sugar
meter proxy

Data logger
proxy

PAR sensor
proxy

Other sensor
proxy

Cyberjacket
proxy

ECG sensor
proxy

Other sensor
proxy

Generic device proxy
factory(s)

GPRS

Iridium

802.11

Multicast
beacon

DF

D

D

D

S

S

S

S

S

Device Proxy
Management Client

Register new
device New device

configuration

Sensor
data-pump

RDBMS

Sensor
Database
Service

Sensor
data-pump

Sensor
data-pump

Trial
manager

Add sensor to
trial database

S/w module

Live monitoring display

Sensor and
device status

display

GPS live map

‘elipse of
normality’

visualisation

Scrolling
sensor charts

S

Data
chooser/
fetcher

Table views

Graph views

Dataflow user interface

DF

D

S

New GRID Port Types:

DeviceProxyFactory

Device

Sensor

Fig. 3. Overview of architecture diagram

3.3 Tools

We have developed two main data viewing tools. The first supports a live device and
sensor monitoring display. Since devices are self-describing they provide information
about their own data output format. We take advantage of this property to automati-
cally plot views of live data. A modifiable template plot window is easily summoned
for quick monitoring, and is used as a base library for more complex monitoring ap-
plications.

The second data viewing tool works with archived data in the database and allows
users to deal with larger blocks of data and do more complex processing and visuali-
sation. Users can also specify a dataflow computation by creating a dataflow graph.

104 J. Humble et al.

They then perform the computation by invoking a scheduling algorithm on the graph.
The scheduling algorithm examines processing units in the graph, and executes a
processing unit only when it has sufficient new input data and when it has an output
that is clear onto which data can be placed.

The dataflow methodology was chosen as a potential way of offering easy access
to data on an instance of the Grid database, because all the complexity of accessing
the database can be hidden in the simple visual representation of a processing unit.
Figure 3 shows a representative deployment of the overall architecture including
proxies, management elements and data viewing tools.

4 Wearable Medical Devices

The wearable medical devices project aims to allow patients to be monitored re-
motely, allowing short-term clinical exercises without restricting the patient’s move-
ments. This would, for example, allow patients to walk about the hospital, clinical
office or home whilst being monitored, subject to them being within range of total or
partial wireless network connectivity.

Patients wear a jacket containing a small computer (bitsy), attached to which are
several sensing devices through a 9-wire bus [6]. Each sensor takes a reading at a
predefined interval and sends the reading to the wearable computer (see figure 4).

Bitsy
Strong
ARM

LiIon

GPS

SpO2 ECG

Electrodes

SpO2Sensor

Fig. 4. Bristol Lifejacket and modular design

A Wavelan card attached to the bitsy allows the sensor readings to be transferred to
network services for analysis and storage. Should the analysis suggest the patient is
in immediate physiological danger, a clinician could be alerted. Additionally, data
collection from a patient over a long period of time could be further analysed to reveal
long term health problems.

In a Wavelan setting readings are produced regularly and continuously, so it was
decided that individual readings would be reported. The bitsy has a lightweight im-
plementation of SOAP called GSOAP [20], and this was used to add readings to indi-

 A Generic Architecture for Sensor Data Integration with the Grid 105

vidual sensor proxy measurements queues as they were produced. This data was used
through the live monitoring application and/or pumped into the database as described.

Typically, information is gathered from multiple sensor types in order to accurately
track and diagnose a given disease state. The combination of electro-physiological
and other medical parameters that must be monitored for a specific medical condition
varies widely; subsequently the sensors used in this study are designed to ease their
introduction and withdrawal from the monitoring exercise as necessary. At the time
of writing, the sensors integrated include:

Blood Oxygen Saturation Sensor (SpO2): derives the level of oxygen present in
arterial blood via a calculation on the ratio of light absorption resulting from oxygen-
ated and reduced haemoglobin through a well-perfused body part (e. g. the finger).

Electrocardiogram (ECG): signal produced on the surface of the skin by the electri-
cal activity of the heart.

Skin Temperature: monitored using clinical grade thermistors.

GPS: Satellite positioning while outdoor.

Live monitoring of a patient’s life signals can be achieved by requesting notifica-
tion when new data becomes available (as described in section 3.2). The origin of
such notifications can be directly from the devices (via the proxy), after a midway
post-process, via notification from database updates, or from computation services.
In this manner, clinicians are not only capable of accessing the raw patient data, but
the data after a predetermined filtering mechanism or data as output from real-time
computations making use of a window of historical data (e. g. to detect immediate
health risk warnings).

5 The Antarctic Device

The Antarctic device (see figure 5) is deployed on the ice of a frozen lake and moni-
tors local conditions. The body of the Antarctic device contains a commercial scien-
tific data logger, facilities to communicate via Iridium satellite modem, a battery, and
solar panels to augment the power available from the battery. It is only deployed
when the ice is thick enough to support its weight. Various sensors are attached to the
data logger, including light (Photosynthetically Active Radiation, PAR), air tempera-
ture (both above the ice and at various depths in the water column), and wind speed
and direction.

Without the Grid this logged data is collected every few days, either via the satel-
lite link or in person using a serial cable connected to the device. Each data file col-
lected is post-processed to add units, and to generate correctly calibrated values. This
file is then emailed to scientists in Nottingham for analysis.

Scientists in Nottingham are using data collected from the device to develop a
physical model of the lake environment, which is used to help develop models of
carbon cycling in the lake.

It was decided not to maintain a continuous connection to the Antarctic device over
Iridium satellite connection due to expense. Therefore, a table of data containing
hundreds of sets of readings is downloaded from the device and is then processed by
the device proxy. For each sensor attached to the device, the device proxy extracts

106 J. Humble et al.

individual readings from the table and appends them to the sensor proxy’s measure-
ment queue. Data can then be pumped into an instance of the Grid database to be
made available.

Fig. 5. The Antarctic device and connected sensors, which is currently deployed on Crooked
Lake in the Vestfold Hills

6 Summary

We have described an architecture around Globus Toolkit 3 to integrate devices and
sensors into the Grid. A proxy model intermediates between remotely connected
devices and the local network and acts as an always-available first class Grid service.
This facilitates as seamless as possible integration of collected data for immediate
post-processing by available resources. We presented two examples with different
methods and issues of connectivity utilizing an implementation of the architecture.

References

1. I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration”, Open Grid Service Infrastruc-
ture WG, Global Grid Forum, June 22, 2002.

2. de Roure, D., Jennings, N., Shadbolt, N “Research Agenda for the Semantic Grid: A
future e-Science infrastructure”. http://dcs.gla.ac.uk/Nesc/general/technicalpapers/
DavidDeRoure.etal.SemanticGrid. pdf

3. The Open Grid Services Architecture (OGSA) http://www.globus.org/ogsa

 A Generic Architecture for Sensor Data Integration with the Grid 107

4. GLOBUS. The globus toolkit. http://www.globus.org/toolkit/, April 2003.
5. Barratt, C, et al, "Extending the Grid to Support Remote Medical Monitoring", Proceed-

ings of the 2nd UK e-Science All Hands Meeting 2003
6. J. Crowe, B. Hayes-Gill, M. Sumner, C. Barratt, B. Palethorpe, C. Greenhalgh, O. Storz,

A. Friday, J. Humble, C. Setchell, C. Randell, H. L Muller, "Modular Sensor Architecture
for Unobtrusive Routine Clinical Diagnosis", 24th International Conference on Distrib-
uted Computing Systems Workshops - W3: IWSAWC (ICDCSW'04), March 23 - 24,
2004, Hachioji, Tokyo, Japan.

7. S. Benford, N. Crout, J. Crowe, S. Egglestone, M. Foster, C. Greenhalgh, A. Hampshire,
B. Hayes-Gill, J. Humble, A. Irune, J. Laybourn-Parry, B. Palethorpe, T. Reid, and M.
Sumner. e-Science from the antarctic to the Grid. Escience All Hands Meeting 2003.

8. The Oxford Centre for e-health http://www.medicine.ox.ac.uk/ndog/tmr/
9. The Biomedical Informatics Group at Nottingham University

http://www.eee.nott.ac.uk/medical/
10. Computer Assisted Reporting of Electrocardiograms, Glasgow University

http://www.gla.ac.uk/departments/medicalcardiology/research/care.html
11. C. Barratt, B. Hayes-Gill, H. Vyas, and J. Crowe. Selection of pulse oximetry equipment

for ambulatory monitoring. Journal Medical Eng & Tech, 21(1):17–24, 2001.
12. J. Crowe, A. Harrison, and B. Hayes-Gill. The feasibility of long-term fatal heart rate

monitoring in the home environment using maternal abdominal electrodes. Physiol. Meas,
16:195–202, 1995.

13. J. Crowe, B. Hayes-Gill, B. Francon, L. Hardebecke, D. Rogers, Y. Thong, P. Dimmock,
K.Wyatt, and P. O’Brien. Customisation of a personal digital assistant for logging pre-
menstrual syndrome symptoms. British Journal of Healthcare Computing & Information
Management, 17(4):33–35, 2000.

14. A. Harrison, B. Hayes-Gill, J. Crowe, and S. Chang. The application of an Actel field
programmable gate array in the design of an ecg rr interval recorder. Journal Medical
Eng. and Tech, 19(6):198–204, 1995.

15. J. Pieri, J. Crowe, B. Hayes-Gill, C. Spencer, K. Bhogal, and D. James. Compact long-
term recorder of the transabdominal foetal and maternal electrocardiogram.
Med.Biol.Eng. & Comp., 39(1):118–125, 2001.

16. J. Hall and J. Crowe. Ambulatory electrocardiogram compression using wavelet packets
to approximate the Karhunen-Loeve transform. Applied Signal Processing, 3:25–36,
1996.

17. A. Harrison, B. Hayes-Gill, J. Crowe, and S. Chang. The application of an Actel field
programmable gate array in the design of an ecg rr interval recorder. Journal Medical
Eng. and Tech, 19(6):198–204, 1995.

18. Grid based medical devices for everyday health. http://www.gridoutreach.org.
uk/docs/pilots/meddev.htm, 2002.

19. XSIL Specification, http://www.cacr.caltech.edu/projects/xsil
20. gSOAP: Generator Tools for Coding SOAP/XML Web Services in C and C++.

http://www.cs.fsu.edu/~engelen/soap.html

Embarrassingly Distributed and Master-Worker
Paradigms on the Grid�

J. Herrera1, E. Huedo2, R.S. Montero1, and I.M. Llorente1,2

1 Departamento de Arquitectura de Computadores y Automática,
Facultad de Informática, Universidad Complutense de Madrid,

28040 Madrid, Spain
2 Laboratorio de Computación Avanzada, Simulación y Aplicaciones Telemáticas,

Centro de Astrobioloǵıa (CSIC-INTA), 28850 Torrejón de Ardoz, Spain

Abstract. Grids constitute a promising platform to execute loosely
coupled applications, which arise naturally in many scientific and engi-
neering fields like bioinformatics, computational fluid dynamics, particle
physics, etc. In this paper, we describe our experiences in porting three
scientific production codes to the Grid. Those codes follow typical compu-
tational models, namely: embarrassingly distributed and master-worker.
In spite of their relatively simple computational structure, consisting of
many “independent” tasks, their reliable and efficient execution on com-
putational Grids involves several issues, due to both the dynamic nature
of the Grid itself and the execution and programming requirements of
the applications. The applications have been developed by using the
DRMAA (Distributed Resource Management Application API) inter-
face. DRMAA routines are supported by the functionality offered by the
GridW ay framework, that provides the runtime mechanisms needed for
transparently executing jobs on a dynamic Grid environment. The ex-
periments have been performed on Globus-based research testbeds that
span heterogeneous resources in different institutions.

1 Introduction

It is becoming evident that the traditional concept of computing based on a
homogeneous and centrally managed environment is being displaced by a new
model based on the exchange of information and the sharing of distributed re-
sources [1]. However, applications often involve large amounts of data and/or
computing elements that are not easily handled by today’s Internet and web
infrastructures. Grid technologies attempt to provide the support needed for
such an infrastructure, enabling applications to use remote resources managed
by widespread “virtual organizations”.

� This research was supported by Ministerio de Ciencia y Tecnoloǵıa, through the
research grant TIC 2003-01321 and 2002-12422-E, and by Instituto Nacional de
Técnica Aeroespacial “Esteban Terradas” (INTA) – Centro de Astrobioloǵıa.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 108–119, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Embarrassingly Distributed and Master-Worker Paradigms on the Grid 109

The Globus project [2] has constructed an open-source toolkit to build Com-
putational Grids, implementing a set of non-proprietary protocols for securely
identifying, allocating and releasing resources from the Grid. Due to its open-
source nature and its increasing popularity, the Globus toolkit has become a
de facto standard in Grid computing. Globus is a core Grid middleware that
provides the following components, which can be used separately or altogether,
to support Grid applications: GRAM (Globus Resource Allocation Manager),
GASS (Global Access to Secondary Storage), GSI (Grid Security Infrastruc-
ture), MDS (Monitoring and Discovery Service), and GridFTP. These services
allow secure and transparent access to resources across multiple administrative
domains, and serve as building blocks to implement the stages of Grid schedul-
ing [3].

Probably, one of the most challenging problems that the Grid computing
community has to deal with is the fact that Grids are highly dynamic and faulty
environments. Adaptive scheduling has been widely studied in the literature [4,
5, 6], and it has been demonstrated that periodic re-evaluation of the schedule
can result in significant improvements in both performance and fault tolerance.
On the other hand, Adaptive execution can improve application performance
by adapting it to the dynamic availability, capacity and cost of Grid resources.
Moreover, an application should be able to migrate to a new resource to satisfy
its new requirements or preferences (self-adaptation).

In a previous work [7], we have presented a new Globus experimental frame-
work that allows an easier and more efficient execution of jobs on a dynamic
Grid environment in a “submit and forget” fashion. The GridW ay framework
provides resource selection, job scheduling, reliable job execution, and automatic
job migration to allow a robust and efficient execution of jobs in dynamic and
heterogeneous Grid environments based on the Globus toolkit [2]. Moreover,
GridW ay provides support for the Distributed Resource Management Applica-
tion API (DRMAA)[8].

The aim of this paper is to present our experiences on using the Grid to
execute three real applications belonging to the bioinformatics, planetary geol-
ogy and optimization research areas. These applications follow typical loosely
coupled models: embarrassingly distributed and master-worker. We also show
that DRMAA is a suitable and portable framework to express those distributed
communicating paradigms. The tasks that made up the above computing mod-
els could require different complexity or instruction streams. Therefore, adaptive
scheduling is again required to deal with their asynchronous temporal structure.

The main features of the GridW ay framework and its code porting support
are described in Section 2 and 3 respectively. The synchronous and asynchronous
embarrassingly distributed models in the context of a bioinformatics and a plan-
etary geology applications are analyzed in Section 4 and 5. Section 6 deals with
the master-worker paradigm using a grid-oriented genetic algorithm as case of
study. At last, the main conclusions and acknowledgments of this research are
summarized in Section 7.

110 J. Herrera et al.

2 Main Features of the GridW ay Framework

GridW ay [7] is a Globus-based submission loosely-coupled framework that
achieves an efficient execution of applications by combining:

– Adaptive scheduling : Reliable schedules can only be issued considering the
dynamic characteristics of the available Grid resources [5]. In general, adap-
tive scheduling can consider factors such as availability, performance, load
or proximity, which must be properly scaled according to the application
needs and preferences. GridW ay periodically gathers information from the
Grid and from the running or completed jobs to adaptively schedule pending
tasks according to the application demands and Grid resource status.

– Adaptive execution: In order to obtain a reasonable degree of both applica-
tion performance and fault tolerance, a job must be able to migrate among
the Grid resources adapting itself to events dynamically generated by both
the Grid and the running application [9]. GridW ay evaluates each reschedul-
ing event to decide if a migration is feasible and worthwhile.

– Reuse of common files: Efficient execution of some applications profiles, like
parameters sweep, can only be achieved by re-using shared files between
tasks [10]. This is specially important not only to reduce the file transfer
overhead, but also to prevent the saturation of the file server where these files
are stored. Reuse of common files between tasks simultaneously submitted
to the same resource is achieved by storing some files declared as shared in
the GASS cache [11].

– Fault tolerance: The failures that may occur in a Grid can fall in a wide
range of categories such as execution faults, network errors, hardware faults,
configuration problems, etc [12]. Fault detection and recovery depends on the
nature of the failure, and it may involve retrying, migrating or restarting the
execution of an application.

3 GridW ay Code Porting Support

The Distributed Resource Management Application API (DRMAA) Working
Group1, within the Global Grid Forum (GGF)2, has developed an API spec-
ification that allows a high-level interaction with Distributed Resource Man-
agement Systems (DRMS). The DRMAA standard constitutes a homogeneous
interface to different DRMS to handle job submission, monitoring and control,
and retrieval of finished job status.

DRMAA allows scientists and engineers to express their computational prob-
lems in a Grid environment. The capture of the job exit code allow users to
define complex jobs, where each depends on the output and exit code from the

1 http://www.drmaa.org (2004)
2 http://www.gridforum.org (2004)

Embarrassingly Distributed and Master-Worker Paradigms on the Grid 111

previous job. They may even involve branching, looping and spawning of sub-
tasks, allowing the exploitation of the parallelism on the work flow of certain
type of applications.

The target application source code does not have to be modified. How-
ever, due to the high fault rate and the dynamic rescheduling, the application
should generate restart files in order to restart the execution from a given
point. If these files are not provided, the job is restarted from the beginning.
User-level checkpointing managed by the programmer must be implemented
because system-level checkpointing is not currently possible among heteroge-
neous resources. In order to adapt the execution of a job to its dynamic de-
mands, the application can specify its host requirements through a requirement
expression. Also, in order to prioritize the resources that fulfill the require-
ments according to its runtime needs, the application must specify its hosts
preferences through a ranking expression. The ranking expression uses a
performance model to estimate the job turnaround time as the sum of execution
and transfer time, derived from the performance and proximity of the candidate
resources [13].

In this work we will analyze the following loosely coupled paradigm:

– Embarrassingly distributed: Applications that can be obviously divided into
a number of independent tasks. The application is asynchronous when
require distinct instruction streams and so different execution times. A
sample of this schema with its DRMAA implementation is showed in the
figure1.

Pre−processing Job

Post−processing Job

Job 0 Job i Job n

rc = drmaa_init (contact, err);
// Execute initial job and wait for it
rc = drmaa_run_job (job_id, jt, err);
rc = drmaa_wait (job_id, &stat, timeout, rusage, err);
// Execute n jobs simultaneously and wait
rc = drmaa_run_bulk_jobs (job_ids,jt,1, JOB_NUM,1,err);
rc = drmaa_synchronize (job_ids, timeout, 1, err);
// Execute final job and wait for it
rc = drmaa_run_job (job_id, jt, err);
rc = drmaa_wait (job_id,&stat, timeout, rusage, err);
rc = drmaa_exit (err_diag);

Fig. 1. Embarrassingly distributed paradigm and its codification using the DRMAA
standard

– Master-worker: A Master task assigns a description (input files) of the task
to be performed by each Worker. Once all the Workers are completed, the
Master task performs some computations in order to evaluate a stop criterion
or to assign new tasks to more workers. Again, it could be synchronous or
asynchronous. Figure 2 shows a example of Master-worker optimization loop
and a DRMAA implementation sample.

112 J. Herrera et al.

Post−processing Job (POST)

Initialization Job (INI)

Master Job (M)

W0 Wi Wn

rc = drmaa_init(contact, err_diag);
// Execute initial job and wait for it
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout, rusage, err_diag);

while (exitstatus != 0) {
// Execute n Workers concurrently and wait
rc = drmaa_run_bulk_jobs(job_ids, jt, 1, JOB_NUM, 1,

err_diag);
rc = drmaa_synchronize(job_ids, timeout, 1, err_diag);
// Execute the Master, wait and get exit code
rc = drmaa_run_job(job_id, jt, err_diag);
rc = drmaa_wait(job_id, &stat, timeout, rusage, err_diag);
rc = drmaa_wexitstatus(&exitstatus, stat, err_diag);

}
rc = drmaa_exit(err_diag);

Fig. 2. Master-Worker paradigm and its codification using the DRMAA standard

4 Synchronous Embarrassingly Distributed Paradigm

4.1 A Protein Structure Prediction Application

Bioinformatics, which has to do with the management and analysis of huge
amounts of biological data, could enormously benefit from the suitability of
the Grid to execute high-throughput applications. In the context of this paper,
we consider a bioinformatics application aimed at predicting the structure and
thermodynamic properties of a target protein from its amino acid sequences.
The algorithm, tested in the 5th round of Critical Assessment of techniques
for protein Structure Prediction (CASP5), aligns with gaps the target sequence
with all the 6150 non-redundant structures in the Protein Data Bank (PDB), and
evaluates the match between sequence and structure based on a simplified free
energy function plus a gap penalty term. The lowest scoring alignment found is
regarded as the prediction if it satisfies some quality requirements. In such cases,
the algorithm can be used to estimate thermodynamic parameters of the target
sequence, such as the folding free energy and the normalized energy gap [14].

To speed up the analysis and reduce the data needed, the PDB files are
preprocessed to extract the contact matrices, which provide a reduced repre-
sentation of protein structures. The algorithm is then applied twice, the first
time as a fast search, in order to select the 100 best candidate structures, the
second time with parameters allowing a more accurate search of the optimal
alignment.We have applied the algorithm to the prediction of thermodynamic
properties of families of orthologous proteins, i.e. proteins performing the same
function in different organisms. If a representative structure of this set is known,
the algorithm predicts it as the correct structure.

4.2 Results

The experiments presented in this section were conducted on a research testbed
based on the Globus Toolkit described in table 1. This testbed is highly hetero-
geneous and it is made up of resources belonging to two different sites intercon-
nected by a “public” non-dedicated network.

Embarrassingly Distributed and Master-Worker Paradigms on the Grid 113

Table 1. Research testbed for the protein structure prediction application

Name Site Architecture Speed Mem. OS DRMS
ursa DACYA-UCM 1×UltraSPARC-IIe 500MHz 256MB Solaris fork
draco DACYA-UCM 1×UltraSPARC-I 167MHz 128MB Solaris fork
pegasus DACYA-UCM 1×Pentium 4 2.4GHz 1GB Linux 2.4 fork
solea DACYA-UCM 2×UltraSPARC-II 296MHz 256MB Solaris fork
babieca LCASAT-CAB 5×Alpha EV67 450MHz 256MB Linux 2.2 PBS

The following set of experiments shows how adaptive scheduling improves
the performance and adaptive execution provides fault tolerance by restarting
the execution from the beginning. Let us consider an experiment consisting in
88 tasks, each of them applies the structure prediction algorithm to a different
sequence of the Triosephosfate Isomerase enzyme which is present in different
organisms. The overall execution time for the bioinformatics application, when
all the machines in the testbed are available, is 7.15 hours with an average
throughput of 12 jobs per hour.

This experiment was reproduced in two new situations. In the first case,
babieca is shut down for maintenance in the middle of the experiment during
one hour. As a consequence, the framework stops scheduling jobs in this host
and the average job turnaround is reduced to 10 jobs per hour. Once babieca is
restarted, GridW ay schedules jobs on it again and the throughput increases to
nearly 12 jobs per hour. The second case starts with pegasus unavailable, and
it is plugged in to the Grid 3.5 hours after the experiment started. As could
be expected, the absence of pegasus decreases the average throughput (9 jobs
per hour), and increases the overall execution time to 9.8 hours. Figure 3 shows
the dynamic job turnaround time during the execution of the application in the
above situations.

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

T
hr

ou
gh

pu
t (

Jo
bs

 p
er

 h
ou

r)

Time (hours)

pegasus discovered

testbed fully available

babieca down
pegasus discovered

babieca down

Fig. 3. Dynamic throughput in the execution of the application when the testbed is
fully available, when pegasus is discovered and when babieca is down

114 J. Herrera et al.

5 Asynchronous Embarrassingly Distributed Paradigm

5.1 A Mars Impact Cratering Application

Our target application analyzes the threshold diameter for cratering the seafloor
of an hypothetical martian sea during the first steps of an impact. Results of
this analysis can be used to develop a search criteria for future investigations,
including techniques that will be used in future Mars exploration missions to
detect buried geological structures using ground penetrating radar surveys, as
the ones included in the ESA Mars Express and planned for NASA 2005 mis-
sions.The discovery of marine-target impact craters on Mars would also help to
address the ongoing debate of whether large water bodies occupied the northern
plains of Mars and help to constrain future paleoclimatic reconstructions [15].
In any case, this kind of studies requires an huge amount of computing power,
which is not usually available within a single organization.

Numerical simulations use the Eulerian mode of a 2D hydrocode based on
SALES-2 [16]. The original hydrocode, Simplified Arbitrary Lagrangian-Eulerian
(SALE), permits to study the fluid-dynamics of 2D viscous fluid flows at all
speeds, from the incompressible limit to highly supersonic, with an implicit treat-
ment of the pressure equation, and a mesh rezoning philosophy. The PDE solved
are the Navier-Stokes equations.

We deal in this study with vertical impacts, as they reduce to 2D problems
using the radial symmetry. All simulations were conduced with spherical projec-
tiles. For a fixed water depth, we used 8 cases of projectile diameter in the range
of 60 m to 1 Km, and 3 cases of impactor velocity: 10, 20 and 30 Km/s. Cal-
culations were performed for 3 cases of water depth: 100, 200 and 400 m. Once
fixed the projectile velocity and the water depth of the hypothetical ocean, we
search to determine the range for the critical diameter of the projectile which can
crater the seafloor [17]. Therefore, in this study we have to compute 72 cases. Its
execution on a Grid environment allows to obtain the diameter range of interest
within the research cycle time.

5.2 Results

Table 2 shows the characteristics of the machines in the research testbed, based
on the Globus toolkit. The testbed joins resources from five sites, all of them
connected by the Spanish Research and Education Network, RedIRIS. This or-
ganization results in a highly heterogeneous testbed, since it presents several
architectures, processor speeds, DRMS and network links.

The execution time for each task is different and, what is more important, un-
known beforehand, since the convergence of the iterative algorithm strongly de-
pends on input parameters. Moreover, there is an additional difference generated
by the changing resource load, availability and characteristics. Therefore, adaptive
scheduling is crucial for this application. Figure 4 shows the dynamic turnaround
time during the execution of this experiment. Total experiment time was 4.64
hours (4 hours, 38 minutes and 33 seconds), so the achieved throughput was 3.87
minutes (3 minutes and 52 seconds) per job, or likewise, 15.5 jobs per hour.

Embarrassingly Distributed and Master-Worker Paradigms on the Grid 115

Table 2. Research testbed for the Mars impact cratering application

Name Site Architecture Speed Mem. OS DRMS

hydrus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
cygnus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
cepheus DACYA-UCM 1×Intel PIII 600MHz 256MB Linux 2.4 fork
aquila DACYA-UCM 1×Intel PIII 700MHz 128MB Linux 2.4 fork
babieca LCASAT-CAB 5×Alpha EV67 450MHz 256MB Linux 2.2 PBS
platon REDIRIS 2×Intel PIII 1.4GHz 512MB Linux 2.4 fork
heraclito REDIRIS 1×Intel Cel. 700MHz 256MB Linux 2.4 fork
ramses DSIC-UPV 5×Intel PIII 900MHz 512MB Linux 2.4 PBS
khafre CEPBA-UPC 4×Intel PIII 700MHz 512MB Linux 2.4 fork

0

2

4

6

8

10

12

14

16

0 1 2 3 4 5

Time (hours)

T
hr

ou
gh

pu
t (

Jo
bs

 p
er

 h
ou

r)

Fig. 4. Dynamic throughput in the execution of the application when the testbed is
fully available

6 Master-Worker Paradigm

6.1 A Grid Oriented Genetic Algorithm

Genetics Algorithms (GA) are search algorithms inspired in natural selection
and genetic mechanisms. GAs use historic information to find new search points
and reach an optimal problem solution. In order to increase the speed and the
efficiency of sequential GAs, several Parallel Genetic Algorithm (PGA) alter-
natives have been developed. PGAs have been successfully applied in previous
works, (see for example [18]), and in most cases, they succeed to reduce the time
required to find acceptable solutions.

In order to develop efficient Grid-oriented genetic algorithms [19], the dy-
namism and heterogeneity of a Grid environment must be considered. In this
way, traditional load-balancing techniques could lead to a performance slow-
down, since, in general the performance of each computing element can not be
guaranteed during the execution. Moreover, some failure recovery mechanisms
should be included in such a faulty environment. Taking into account the above

116 J. Herrera et al.

considerations we will use a fully connected multi-deme genetic algorithm. In
spite of this approach represents the most intense communication pattern (all
demes exchange individuals every generation), it does not imply any overhead
since the population of each deme is used as checkpoint files, and therefore trans-
ferred to the client in each iteration.

The initial population is uniformity distributed among the available number
of nodes, and then a sequential GA is locally executed over each subpopulation.
The resultant subpopulations are transferred back to the client, and worst in-
dividuals of each subpopulation are exchanged with the best ones of the rest.
Finally, a new population is generated to perform the next iteration [20]. The
scheme of this algorithm is depicted in figure 5.

Population

SubPopulation SubPopulation SubPopulation

Deme 1 Deme 2 Deme 3

SubPopulation SubPopulation SubPopulationn Best n Best

nBest

Next
Population

Fig. 5. Schema of fully-connected multi-deme genetic algorithm, with three computing
nodes

The previous algorithm may incur in performance looses when the relative
computing power of the nodes involved in the solution process greatly defers,
since the iteration time is determined by the slowest machine. In order to pre-
vent these situations we allow an asynchronous communication pattern between
demes. In this way, information exchange only occurs between a fixed num-
ber of demes, instead of synchronizing the execution of all subpopulations. The
minimum number of demes that should communicate in each iteration depends
strongly on the numerical characteristics of the problem. We refer to this char-
acteristic as dynamic connectivity, since the demes that exchange individuals
differs each iteration.

6.2 Results

We evaluate the functionality and efficiency of the Grid-oriented Genetic Algo-
rithm described above in the solution of the One-Max problem [21]. The One-

Embarrassingly Distributed and Master-Worker Paradigms on the Grid 117

Max is a classical benchmark problem for genetic algorithm computations, and
it tries to evolve an initial matrix of zeros in a matrix of ones. In our case we
consider an initial population of 1000 individuals, each one a 20x100 zero matrix.
The sequential GA executed on each node performs a fixed number of iterations
(50), with a mutation and crossover probabilities of 0,1% and 60%, respectively.
The exchange probability of best individuals between demes is 10%.

The following experiments were conducted on a research testbed made up
of three different sites based on the Globus Toolkit. See table 3 for a brief
description of the resources in the testbed.

Table 3. Research testbed for the Grid oriented genetic algorithm

Name Site Architecture Speed Memory OS DRMS

hydrus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
cygnus DACYA-UCM 1×Intel P4 2.5GHz 512MB Linux 2.4 fork
aquila DACYA-UCM 1×Intel PIII 700MHz 128MB Linux 2.4 fork
babieca LCASAT-CAB 5×Alpha EV67 450MHz 256MB Linux 2.2 PBS

Besides the need for both adaptive scheduling and execution we would like
to remark the advantages of the DRMAA API to aid the rapid development
and distribution across the rid of typical computational models. Figure 6 shows
the execution profile of 4 generations of the GOGA, with a 5-way dynamic con-
nectivity. Each subpopulation has been traced, and labelled with a different
number (Pdeme). As can be shown, individuals are exchanged between subpop-
ulations P1, P2, P3, P4, P5 in the first generation; while in the third one the
subpopulations used are P1, P2, P4, P7, P8. In this way the dynamic connectiv-
ity, introduces another degree of randomness since the demes that communicate
differ each iteration and depend on the dynamism of the Grid.

Fig. 6. Execution profile of four generations of the One-Max problem, each subpopu-
lation has been labelled with Pdeme

118 J. Herrera et al.

7 Conclusions and Acknowledgments

We have shown how an adaptive approach for job scheduling and execution is
required due to both the changing conditions of the Grid resources and the
asynchronous nature of some applications. The functionality, robustness and
efficiency of a Grid environment consisting of GridW ay and Globus have been
analyzed through the execution of typical scientific applications. We have demon-
strated that DRMAA is a suitable and portable framework to express the appli-
cations studied in this work: a protein structure prediction application, a Mars
impact cratering application and a Grid oriented genetic algorithm.

We would like to thank all the research centers that generously contribute
resources to the experimental testbed. They are the European Center for Paral-
lelism of Barcelona (CEPBA) in the Technical University of Catalonia (UPC),
the Department of Computer Architecture and Automatics (DACyA) in the
Complutense University of Madrid (UCM), the Department of Information Sys-
tems and Computation (DSIC) in the Polytechnic University of Valencia (UPV),
the Laboratory of Advanced Computing, Simulation and Telematic Applications
(LCASAT) in the Center for Astrobiology (CAB), and the Spanish National Re-
search and Education Network (RedIRIS). All of them are part of the Spanish
Thematic Network on Grid Middleware.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufman (1999)

2. Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl.
J. Supercomputer Applications 11 (1997) 115–128

3. Schopf, J.M.: Ten Actions when Superscheduling. Technical Report WD8.5, The
Global Grid Forum (2001) Scheduling Working Group.

4. Buyya, R., D.Abramson, Giddy, J.: A Computational Economy for Grid Comput-
ing and its Implementation in the Nimrod-G Resource Broker. Future Generation
Computer Systems (2002) Elsevier Science.

5. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In: Proceedings of the 9th
Heterogeneous Computing workshop (HCW2000). (2000) Cancun, Mexico.

6. Allen, G., et al.: The Cactus Worm: Experiments with Dynamic Resource Dis-
covery and Allocation in a Grid Environment. International Journal of High-
Performance Computing Applications 15 (2001)

7. Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution
on Grids. Intl. J. Software – Practice and Experience (SPE) 34 (2004) 631–651

8. Herrera, J., Huedo, E., Montero, R.S., Llorente, I.M.: Developing Grid-Aware
Applications with DRMAA on Globus-based Grids. In: Proc. of 10th Euro-Par
Conference. Volume 3149 of Lecture Notes on Computer Science. (2004)

9. Vadhiyar, S., Dongarra, J.: A Performance Oriented Migration Framework for
the Grid. In: Proceedings of the 3rd IEEE/ACM Int’l Symposium on Cluster
Computing and the Grid (CCGrid). (2003)

Embarrassingly Distributed and Master-Worker Paradigms on the Grid 119

10. Giersch, A., Robert, Y., Vivien, F.: Scheduling Tasks Sharing Files on Heteroge-
neous Master-Slave Platforms. In: Proc. 12th Euromicro Conf. Parallel, Distributed
and Network-based Processing (PDP 2004), IEEE CS (2004) 364–371

11. Huedo, E., Montero, R.S., Llorente, I.M.: Experiences on Adaptive Grid Schedul-
ing of Parameter Sweep Applications. In: Proc. 12th Euromicro Conf. Parallel,
Distributed and Network-based Processing (PDP 2004), IEEE CS (2004) 28–33

12. Medeiros, R., Cirne, W., Brasileiro, F., Sauvé, J.: Faults in Grids: Why Are They
so Bad and What Can Be Done about It? In: Proc. of the 4th Intl. Workshop on
Grid Computing (Grid 2003). (2003)

13. Huedo, E., Montero, R.S., Llorente, I.M.: Experiences on Grid Resource Selection
Considering Resource Proximity. In: Proc. of 1st European Across Grids Conf.
Volume 2970 of Lecture Notes on Computer Science. (2003)

14. van Ham, R., et al.: Reductive Genome Evolution in buchnera aphidicola. Proc.
Natl. Acad. Sci. USA 100 (2003) 581–586

15. Ormö, J., Dohm, J.M., Ferris, J.C., Lepinette, A., Fairén, A.: Marine-Target
Craters on Mars? An Assessment Study. Meteoritics & Planetary Science 39 (2004)
333–346

16. Gareth, S.C., Melosh, H.J.: SALES 2: A Multi-Material Extension to SALE Hy-
drocode with Improved Equation of State and Constitutive Model. Available at
http://www.lpl.arizona.edu/˜gareth/publications/sales 2 (2002)

17. Housen, K.R., Schmidt, R.M., Holsapple, K.A.: Crater Ejecta Scaling Laws: Fun-
damental Forms Based on Dimensional Analysis. Journal of Geophysical Research
88 (1983) 2485–2499

18. Kang, L., Chen, Y.: Parallel Evolutionary Algorithms and Applications. (1999)
19. Imade, H., Morishita, R., Ono, I., Ono, N., Okamoto, M.: A Grid-oriented Genetic

Algorithm Framework for Bioinformatics. New Generation Computing 22 (2004)
177–186

20. Cantú-Paz, E.: A Survey of Parallel Genetic Algorthms (1999)
21. Schaffer, J., Eshelman, L.: On Crossover as an Evolutionary Viable Strategy. In

Belew, R., Booker, L., eds.: Proceedings of the 4th International Conference on
Genetic Algorithms, Morgan Kaufmann (1991) 61–68

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 120 – 133, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Framework for the Design and Reuse of
Grid Workflows

Ilkay Altintas1, Adam Birnbaum1, Kim K. Baldridge1,2, Wibke Sudholt2,
Mark Miller1, Celine Amoreira2, Yohann Potier2, and Bertram Ludaescher1,3

1 San Diego Supercomputer Center, University of California at San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

{altintas, birnbaum, kimb, miller, ludaesch}@sdsc.edu
2 Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190,

CH-8057 Zurich, Switzerland
{kimb, wibke, ypotier, amoreira}@oci.unizh.ch

3 Dept. of Computer Science & Genome Center, University of California at Davis,
One Shields Ave, Davis, CA 95616, USA

ludaesch@ucdavis.edu

Abstract. Grid workflows can be seen as special scientific workflows involving
high performance and/or high throughput computational tasks. Much work in
grid workflows has focused on improving application performance through
schedulers that optimize the use of computational resources and bandwidth. As
high-end computing resources are becoming more of a commodity that is
available to new scientific communities, there is an increasing need to also im-
prove the design and reusability “performance” of scientific workflow systems.
To this end, we are developing a framework that supports the design and reuse
of grid workflows. Individual workflow components (e.g., for data movement,
database querying, job scheduling, remote execution etc.) are abstracted into a
set of generic, reusable tasks. Instantiations of these common tasks can be func-
tionally equivalent atomic components (called actors) or composite components
(so-called composite actors or subworkflows). In this way, a grid workflow de-
signer does not have to commit to a particular Grid technology when develop-
ing a scientific workflow; instead different technologies (e.g. GridFTP, SRB,
and scp) can be used interchangeably and in concert. We illustrate the applica-
tion of our framework using two real-world Grid workflows from different sci-
entific domains, i.e., cheminformatics and bioinformatics, respectively.

1 Introduction

With the increase in the volume of scientific data and knowledge, the demand to util-
ize the largest portion thereof in an efficient and simple way has become one of the
main challenges in today’s science. Many scientific domains need computing methods
and resources for continued improvement of the quality of their research. Important
examples include computational problems in bio- and cheminformatics. Technical
challenges also arise through the introduction of different, heterogeneous distributed
network computing systems that make up the Grid [1,2]. While an increasing number
of computational tools for the Grid become available, they are generally difficult to

 A Framework for the Design and Reuse of Grid Workflows 121

use for the domain scientist. Scientific workflow user environments, e.g., Kepler [7],
Taverna [8], and Triana [9], aim at improving this situation by “wrapping” Grid tools
and making them available in a user-friendly visual programming environment.

Grid Workflows can be seen as special scientific workflows that exhibit features of
high-performance computing (HPC) workflows and/or high-throughput computing
(HTC) workflows. While the focus of the former is on maximal peak performance,
e.g., in terms of floating point operations per second (FLOPs), the latter can deliver
large amounts of processing capacity over long periods of time [3]. HTC systems are
effective for problems that deal with the management and tracking of data movements
and the efficient assignment of tasks to resources.

We first discuss the practice of and the challenges in assembling HTC Grid work-
flows, and describe a Grid workflow framework that can help scientists develop HTC
workflows for their research problems (Section 2). This is followed by a discussion of
two real-world use cases from the cheminformatics and bioinformatics domains, re-
spectively (Section 3). We conclude in Section 4 with a brief outlook on future work.

2 Grid-Workflow Framework

With the existing Grid infrastructure, building scientific applications for large-scale
collaborative Grid workflows is complicated. Many scientists do not have the techni-
cal expertise to use the existing Grid components, so they need to recruit additional
Grid expertise to assist them with their applications. One of the main reasons for these
difficulties is that the basic Grid services to authenticate, access, manage, and
discover remote resources are not easily obtained, nor easy to utilize once they are
obtained. The goal of our Grid framework is to design abstract components and tem-
plates that facilitate Grid-based workflow construction, and to integrate multiple such
Grid components into a single system with an intuitive graphical user interface (GUI).

Such a Grid workflow framework can be useful at several levels, e.g. as a model-
ing environment to capture the scientists’ high-level ideas as a model of a scientific
process, to design application-specific data analysis pipelines, or even to control the
actual computational experiments, track the provenance of derived data, etc. The
workflows generated by the system can be saved and reused in other studies. Another
function of such a framework is to interface multiple technologies in one composition
infrastructure, and use them interchangeably (e.g., GridFTP get vs. SRB get vs. scp
etc.) To the best of our knowledge, ours is the first such workflow framework and
system with this capability.

2.1 Grid Workflows: The Ingredients

We summarize below some common Grid service functions and then describe the
abstract components that correspond to these functions in our framework.

Authentication. The Grid community has generated tools for authentication and
authorization via generated proxy certificates. As summarized in [4], certificate man-
agement tools are developed for generating credentials for users and services, for
getting users “signed up” to use a Grid, and for getting users’ Grid credentials to
wherever they are needed in a system. The Globus Toolkit [5] provides software de-

122 I. Altintas et al.

velopment kits for the core security software in Globus-based Grid systems and appli-
cations. These Software Development Kits (SDKs) include libraries and Java APIs for
a certificate-based authentication system that conforms to the Grid Security Infra-
structure (GSI) and that can be used to generate proxy components. The toolkit also
provides a web services implementation of the same package.

As straightforward as it sounds, these tools still require programming in order to be
used in an end-user application. An abstract component in a visual workflow pro-
gramming environment simplifies such programming (see Section 3).

Data Movement. Access and management of remote data are basic functions in dis-
tributed Grid computing. There are several methods for moving data from one loca-
tion to another, e.g., GridFTP, SRB put/get, scp and others. GridFTP is a secure data
transfer protocol optimized for wide-area networks. The SDSC Storage Resource
Broker (SRB) is a client-server middleware that provides a uniform interface for con-
necting to heterogeneous data resources over a network and for accessing replicated
data sets, e.g., based on metadata attributes [6]. While the former two are designed
and optimized for file sharing of very large data over the Grid, sometimes a simple
scp (secure copy) Unix command may be sufficient and easier to use for the scientist.
scp is a shell command that allows users to copy files between systems quickly and
securely, without the need for expertise in Grid systems. Such a tool can be as helpful
in some workflows as any of the other file transfer mechanisms, even for data that
will be used by a Grid job. Most systems provide interfaces to one or more of these
tools. Ideally these methods should be usable interchangeably, depending on the
user’s needs, preferences, and abilities.

Remote Service Execution. Most scientists today are familiar with the use of web-
based resources, and can make their work available through such distributed systems.
However, manual copy/pasting or programming is usually required when using multi-
ple of these resources in a data analysis or transformation pipeline. Often software
developers are needed to write custom workflows that automate large-scale scientific
workflows and processes. The use of generic tools for service-based execution can
simplify the problem somewhat. A service is a component within the Internet comput-
ing model that provides a particular function through a simple remote invocation
mechanism. Through the introduction of Web and Grid services, many new resources
for different scientific domains are becoming available. However, services do not
necessarily “fit together” (in the sense that they can be composed into a chain or pipe-
line of services) unless they have been designed to do so. Hence service composition
(e.g., via “shim services”) is an active field of research and development in scientific
workflow systems [7, 8, 9].

The ssh (secure shell) Unix-command provides a simple way of connecting to a
remote resource and executing a program there. A special actor component for this
command is available in Kepler [7] as an easy way of executing a function on a re-
mote machine, and getting back the results of the execution.

Grid Job Submission. A Grid job is an executable or command that runs on a (typi-
cally remote) Grid resource. The remote resource, also referred to as a ‘contact’ or
‘gatekeeper’, must have a Grid environment such as the Globus toolkit [5] installed to
recognize this submission. Once submitted, a job can run in batch mode or non-batch

 A Framework for the Design and Reuse of Grid Workflows 123

mode. The jobs submitted in batch mode are assigned a job-id, which is returned
immediately and can be used for subsequent monitoring of the submitted job. The
non-batch jobs return the result of the computation once they are finished. Batch
mode submission is useful for jobs that take a long time, such as process-intensive
computations [10]. The jobs to be submitted can be described using the Resource
Specification Language (RSL), a common interchange language to describe resources.

Job Scheduling and Resource Management. In order for a high-throughput applica-
tion to make use of distributed resources, a solution must exist for the scheduling
problem, i.e. there must be a mapping between tasks and resources. Solving this
problem in an ideal system has been shown to be NP-hard [39], and research has
largely focused on the development of scheduling heuristics, which have been built
into the commonly-used high-throughput systems such as Condor [3], Nimrod/G
[11,14], and the AppLeS Parameter Sweep Template (APST) [12]. In building practi-
cal systems, it is difficult to isolate the issues of scheduling from those of managing
the heterogeneity and instability of component subsystems. All three of the aforemen-
tioned high-throughput scheduling tools have the ability to constantly monitor and
adjust to changing load and performance. In addition, they all provide some ability to
monitor the state of the running application, as they all maintain job databases that
may be polled and updated during experiment execution. It is one of our goals in this
work to show how these systems can be leveraged in the construction of Grid work-
flows.

Fault Tolerance. Because Grid workflows depend on distributed computational
resources under diverse controlling authorities, they are exposed to high risk of com-
ponent failure, including failures in computational platforms, network, application
services or the workflow system itself. Many of these issues fall into the domain of
system and network administrators, who must design infrastructure to provide redun-
dant components. In this work, we address only the parts that are under our control; in
particular, the workflow system can retry to connect to failed resource or service after
a certain amount of time. Redundant resources may be either found in a service regis-
try, or may be hard-coded into workflows. The decision on which approach has to be
taken depends on the fail-over policy/strategy of a particular workflow system.

Logging and Provenance. In scientific applications it is often necessary to keep track
of data and processes that were used to produce the results of a computational
experiment or scientific workflow, in particular to facilitate reproducibility. This
provenance information can be associated with a result data set or workflow run,
effectively providing an execution trace of certain crucial provenance information.
Logging services, e.g., of the Globus Toolkit [13], can be customized and integrated
into a scientific workflow system for this purpose. Such services provide interfaces to
modify log filters and monitor and create views over previous logs.

User Interaction and Reporting. Scientific workflows may require user interaction
at runtime, e.g., to determine which data subsets should be routed through which of
several alternate paths of the workflow, or for computational steering. Workflow
engines already maintain information of intermediate steps and execution details of
processes. The challenge is to display that information in a way that it will satisfy the

124 I. Altintas et al.

needs of different users, with different detail levels and provisions for a variety of
different publishing methods.

2.2 Component Composition and Interaction

Kepler [16] is an active cross-project collaboration bringing together several large-
scale NSF/ITR projects (including SEEK [18], GEON [17], and ROADNet [19]), the
DOE/SciDAC SDM project [20], and several other projects including Research Surge
Enabled by Cyberinfrastructure (Resurgence) [21] and Encylopedia of Life (EOL)
[22], to develop an open source scientific workflow system. The emerging Kepler
system allows scientists from different domains (bioinformatics, cheminformatics,
ecoinformatics, geoinformatics, astrophysics etc.) to design and execute scientific
workflows. Scientific workflows can be used to combine data integration, analysis,
and visualization steps into larger, automated "knowledge discovery pipelines" and
"grid workflows" [23, 33].

Kepler is build on top of the mature Ptolemy II system developed at UC Berkley
[24]. Ptolemy II is a system along with a set of APIs for heterogeneous hierarchical
modeling. Not unlike the electrical circuit design, the focus of the Ptolemy II system
is to build models of systems based on the assembly of predesigned components.
These components are called actors [25]:

“An actor is an encapsulation of parameterized actions performed on input data to pro-
duce output data. An actor may be state-less or state-full, depending on whether it has
internal state. Input and output data are communicated through well-defined ports.
Ports and parameters are the interfaces of an actor. A port, unlike methods in Object-
Oriented designs, does not have to have a call-return semantics. The behaviors of a set
of actors are not well-defined without a coordination model. A framework is an envi-
ronment that actors reside in, and defines the interaction among actors.”

The interaction styles of actors are captured by models of computation (MoC). A
MoC defines the communication semantics among ports and the flow of control and
data among actors.

A framework implements a model of computation. Frameworks and actors together
define a system [25]. In our Grid Workflow framework, we define a set of grid actors
in Kepler that work in dataflow-based computation models such as Process Network
(PN) and Synchronous Data Flow (SDF). Directors are responsible for implementing
particular MoCs, and thus they define the “orchestration semantics” workflows. Sim-
ply by changing the director of a workflow, one can change the scheduling and over-
all execution semantics of a workflow, without changing any of the components or
the network topology of the workflow graph.

The theoretical basis for the PN director are Kahn Process Networks. A process
network is a directed graph, comprising a set of nodes (processes) connected by a set
of directed arcs (representing FIFO queues). Each process executes a sequential pro-
gram and is wrapped as a Ptolemy II actor. The one-way FIFO channels are used for
the communication of processes and, in Kahn’s process networks, have unbounded
capacity, i.e., each channel can carry a possibly infinite sequence (a stream) of atomic
data objects (tokens). Since channels have in principle unbounded capacity, writes to
channels are non-blocking, while reads are blocking [26]. The PN domain in Ptolemy
and the director implementing it in Ptolemy (and thus in Kepler) employ an extended

 A Framework for the Design and Reuse of Grid Workflows 125

model due to Lee and Parks [27, 28]. The SDF domain is a special variant of PN in
which a sequential execution order of actors can be statically determined prior to
execution. This results in execution with minimal overhead, as well as bounded mem-
ory usage and a guarantee that deadlock will never occur.

2.3 Abstract Grid Workflow Actors

Grid workflows often exhibit similar flow patterns [29, 30], including the basic work-
flow patterns [31]. A very common scenario is the following: a user needs to copy (or
stage) a set of files from one resource (e.g., the local environment) to a remote re-
source, run a computational experiment on that remote resource, and then fetch the
results back to the local environment or copy them to another resource/database. We
call these types of workflows stage-execute-fetch workflows. A script can implement
a workflow that conforms to this pattern. However, a script does not specify the de-
tails of the scheduling of tasks and communication between the resources while the
workflow is running. Also, scripts are often platform dependent and specific to a
scenario, despite the fact that the pattern can be parameterized and used in many
workflows. Users could more easily specify their own workflows via GUIs or a well-
defined set of reusable components (actors) that can be connected to each other
through some interfaces. The Kepler scientific workflow system, through its modeling
foundation inherited from Ptolemy, provides an environment with such reuseable
building blocks for Grid workflows. Motivated by the need to develop a simple, ex-
tensible, platform independent, and client-controllable grid workflow framework, we
propose the following set of abstract actors that can be used as building blocks for the
construction of Grid workflows.

Authenticate Actor. This component acts as a certificate source for other actors. All
actors that use the same certificate can use the output of this actor. For the Globus
Grid authentication, the actor initializes a proxy that creates a Globus proxy certificate
from an X.509 key and certificate pair, when provided a pass-phrase. For SRB and
remote database actors, this actor is generating the connection and can forward a
connection token to the following steps in the workflow.

Copy Actor. This fundamental actor copies sets of files from one resource to another
resource during workflow execution. The abstract copy actor can be instantiated to a
simple FTP actor, a secure copy (scp) actor, a GridFTP actor, or an SRB-based
put/get actor. For example, a GridFTP actor involves a Globus-grid proxy certificate,
source and destination resources including directories, and a set of file names to be
transferred. Similarly, SRBPut and SRBGet can be used to instantiate the abstract
copy actor. Special variants include:

• Stage Actor. This variant copies files from the local host to a remote host.
• Fetch Actor. This variant retrieves files from the remote host to the local host.

Job Execution Actor. The purpose of this actor is to submit and run a remote job.
Submission methods and clients can include special wrappers for ssh-based execution,
web service-clients, Grid job runner proxies, and actors for Nimrod- and APST-based

126 I. Altintas et al.

submission. Kepler provides a variety of these instantiations, which have proven to be
useful for remote job execution in different scientific application domains [32, 33].

Monitoring Actor. Monitoring actors and tools of our framework are designed to be
scalable depending on user needs. We propose three different levels of monitoring,
namely, light, standard, and heavy. In the standard monitoring level, the user is noti-
fied only if an actor fails to execute. Polling the job database of Nimrod/G or APST is
an example mechanism for checking the state of execution of an actor. The overall
workflow execution monitoring is done via a monitoring subsystem that interacts with
the director. The light monitoring system is one that watches the execution but does
not notify the user about failures until the workflow has finished or stalled. The heavy
monitoring verbosely reports every communication between the workflow entities and
also notifies the user about failures immediately.

Reporting Actor. The reporting actors work in coordination with the other actors to
report regular intermediate results or exceptional conditions such as actor failures.
This actor can also be implemented as a separate utility rather than as a Kepler actor.
It talks to the monitoring unit and director, and allows users to report information
wherever they would like, e.g., at a remote Grid resource, in a provenance database,
or directly on a website.

Filter Actor. Filtering and subsetting data is a very common function. For example
on a tuple stream, or a stream of XML elements, filtering corresponds to a selection
operation σ. In contrast, cutting a certain region of interest from a map image can be
seen as a data subsetting operation. A common requirement in Grid applications is to
filter or subset data at the (usually remote) site of origin before passing it on to subse-
quent processing steps of the workflow.

Storage Actor. Once results are produced, they need to be stored on different re-
sources, file systems, or databases. Sometime this step is preceded by a filtering step
so that only interesting data will be saved. Stored information can include the primary
data flowing through a workflow as well as process and provenance related metadata.
Different incarnations of this actor can be used to save data on a number of storage
devices, e.g. directly to a file system or databases, or indirectly to SRB.

Data Discovery Actor. Previously stored results should be searchable in various
ways, e.g., through simple keyword based search, or more advanced ontology-based
search mechanisms that “understand” how to expand a given search term (or a meta-
data annotation of a dataset). Since discovery of relevant datasets is very common
tasks, the data discovery component is being integrated into the Kepler graphical user
interface (i.e., Vergil, which is Ptolemy’s GUI).

Service Discovery Actor. Kepler provides a web service harvester component for
importing web services (or, more precisely, their interfaces) from a service repository
or website. For the latter, the harvester can search text/html pages or repositories for
appropriate links to WSDL web service descriptions. After parsing and analyzing
these descriptions, the harvested web services appear in Kepler as any other actors; in
particular, their input and output parameters and types are inferred from the WSDL

 A Framework for the Design and Reuse of Grid Workflows 127

descriptions. Different operations from a single web service “package” are grouped
together via the web service name and stored in the Kepler actor library. Once im-
ported, web service actors are given a local LSID and can be annotated using a Kepler
actor classification ontology. In this way, different dynamic view can be created on
the actor library, depending on the chosen “view ontology” and the given search
terms (concept names). Annotations can refer to a (web service) actor as a whole, or
to the specific inputs and outputs of the actor. After the web service import is com-
pleted, actors representing the different operations can be searched, dragged and
dropped onto Kepler’s Vergil design interface, etc. like any other predefined actor.

Transformation and Querying Actors. When chaining together actor components to
form larger workflows, consecutive actors or services do not necessarily “fit to-
gether”. Data transformation actors and query actors can be used as “shims” to bridge
structural and/or format mismatches between the output of a data producing actor and
the input of a subsequent data consuming actor. Kepler provides various data trans-
formation and querying actors, e.g., XSLT and Perl actors for data transformations,
and XQuery and SQL actors for querying.

2.4 A Grid Workflow Pattern: Stage-Execute-Fetch

The abovementioned set of abstract Grid-related actors and their concrete instantia-
tions allow a Kepler user to design and execute Grid workflows using a number of
different tools, e.g., SRB for data handling including replica management, and
Globus, Condor, and Nimrod, for remote execution and scheduling, respectively. In
this way, the most suitable of a number of Grid tools become available to the scientist
in a uniform manner. In addition to employing existing concrete Grid actors or their
abstract counterparts1, our framework for Grid workflows also includes patterns of
Grid workflows. Such patterns correspond to abstract workflows, i.e. which might not
be immediately executable and which involve abstract actors like the ones discussed
above. An abstract actor can be seen as a “stub” or placeholder for a yet to be speci-
fied function, but whose input and output ports have already been pre-configured to
capture the essential arguments of the operation. For example, the abstract copy actor
will contain as inputs at least descriptions of the files/objects to be copied and their
source and target locations. Concrete instantiations might require additional informa-
tion, e.g., one or more authentication or connection tokens to access the various in-
volved resources.

Using Ptolemy’s hierarchical modeling capabilities, combined with the notion of
abstract actors, larger templates of workflow patterns can be represented as abstract
workflows. A very common pattern involves only three core abstract actors, i.e.,
stage, execute, and fetch, and is described as a linear chain of these actors. This Grid
workflow pattern or template can be retrieved from the workflow repository (which is
identical to the service/actor repository, modulo the fact that workflows are composite
actors) and instantiated using suitable concrete actors to make the abstract workflow
executable. The next section discusses in more detail two instantiations of this pattern,
i.e., two real-world scientific workflows from very different domains.

1 At design-time; they have to be substituted/instantiated with concrete ones at runtime.

128 I. Altintas et al.

3 Instantiating the Framework Using the Kepler Workflow
System

The proposed Grid framework and its incarnation in Kepler have proven useful in
different application domains, including those from computational chemistry and
biology described below. Thanks to its generality, the approach and framework are
applicable in other scientific domains as well.

3.1 Use Case 1: GAMESS Workflow for Quantum Chemistry

RESearch sURGe ENabled by CyberinfrastructurE (RESURGENCE) [21] is a project
to develop a general workflow infrastructure for computational chemistry that allows
high-throughput calculations distributed on computational grids. The project was
initiated by the need to make the evolving technologies, such as computational grids
and web services, available to scientists. In addition, such infrastructure provides a
mechanism for researchers to couple different scientific codes within one overall
calculation pipeline, spanning across domain sub-fields, input and output formats, and
computational resources. The goal is thus to build a tool that provides a common user
interface so that users do not have to be concerned with the particulars of grid com-
puting, web services nor their associated underlying code, computational platforms, or
with data file formats. However, the focus is not to generate complete predefined
workflows, but large enough workflow chunks so that scientists can string them to-
gether according to their individual interests. With this purpose in mind, the Resur-
gence project became a part of the Kepler collaboration for developing common sci-
entific workflow systems for a variety of disciplines [30, 34, 35].

The first target of the project is to build a pipeline from the base of Kepler compos-
ite actors, which automatically prepares and executes quantum chemical calculations
for a number of molecules, with the individual input files generated on the fly (see
Figure 1). For this, the General Atomic and Molecular Electronic Structure System
(GAMESS) [36, 37] is employed, a program for ab initio molecular quantum chemis-
try. The program is an important internationally used software tool for the study of
molecular and biomolecular research problems. Using this software, one can make
reliable predictions of the structure, molecular properties and reactivity of molecules,
which are useful for understanding complex problems in the real world. There are
many standardized methods that can be invoked within the software package, and a
very large variety of options and capabilities exist. Results of these computations can
be compared to experimentally determined properties of the same type, used for pre-
dictions of properties before an experiment is performed, or, in some cases provide
information that can not be obtained experimentally. As such, results of these compu-
tations can fill important gaps in our scientific knowledge. The software can be run on
a variety of computer platform types, and many enhancements have been made to
GAMESS both scientifically, as well as in terms of the latest middleware technology
developments. Therefore, the software serves as an excellent testbed and driving ap-
plication for further development of the Kepler system.

 A Framework for the Design and Reuse of Grid Workflows 129

Fig. 1. Development version of the Resurgence GAMESS pipeline during execution

One principle of workflows in the Resurgence project is that the complex file
preparation, transformation and analysis pipeline components should be mainly exe-
cuted on the same machine where Kepler is running, while the highly compute-
intensive molecular calculation pipeline components should be executed on dedicated,
typically remote, compute servers, if possible. This allows access to helper tools that
are often only installed on the central machine, to safeguard intermediate files after
each workflow step and collect all outcomes in one place, but also means that input
and output files have to be transferred back and forth between local and grid ma-
chines. This is of course an instantiation of the general stage-execute-fetch pattern,
refined by other steps, including data transformations. For the preparation of
GAMESS input files, the Open Babel program [38] is used to convert between differ-
ent molecular file formats. For the execution of GAMESS jobs, the Nimrod/G toolkit
[11, 14] is applied. For the future, there are plans to extend the Resurgence interface
to additional molecular modeling software, particularly for the treatment of large
biomolecules by classical mechanics. In addition, input and output data are planned to
be directly read from and stored into molecular databases using concrete instances of
the abstract storage actor.

3.2 Use Case 2: The Encyclopedia of Life/iGAP Workflow for Protein Sequence
Annotation

It is hard to think of a better example of the explosion of data than computational mo-
lecular biology. Biologists are currently hard at work in digesting an over-abundance of

130 I. Altintas et al.

DNA and protein sequence data. One such effort is the Encyclopedia of Life Project
(EOL) [22], the goal of which is to predict the three-dimensional protein structures for
all of the genomes that have been sequenced to date. This is a calculation of such a huge
scale that it requires the use of bleeding-edge grid technology and massively-parallel
computation to access the requisite computational power. In previous work [40], we
built a Workflow Management System daemon (WMSD) to manage the logistics of this
large calculation. WMSD selects sequences from an input database, and continuously
feeds many thousands of tasks to APST. APST manages the low-level complexities of
job submission, heterogeneous resource management, and scheduling.

In the present work, we have integrated this workflow system with Kepler. Our ul-
timate aim is to provide biologists with the ability to set up a flexible pipeline of
analysis tasks, which are then executed on a large scale for a huge number of input
sequences. Since this is a long-running system, a key requirement is the ability to
recover from major system failure – an instance of the monitoring actor. This is par-
tially addressed by the fact that WMSD stores its state in an Oracle database, making
it possible to recover from a failure of APST. In such a case, Kepler enables the auto-
mation of higher-level error recovery mechanisms. For example, after correcting the
problem that caused the jobs to fail, it is easy for a scientist to insert actors to reset
jobs with a “failed” state to “new”, which would cause the WMSD actor to resubmit
these jobs to APST at the next update.

Fig. 2. The Encyclopedia of Life iGAP workflow

In the first implementation of this system, the workflow of tasks to be executed for
each genome sequence is hard-coded into logic in the WMSD. The benefit of Kepler
to date has been primarily in the areas of error recovery and resource management. In
the future, we would like to allow the scientist to specify these workflows using the
full power of the Kepler system. In essence, this would allow users to assemble work-

 A Framework for the Design and Reuse of Grid Workflows 131

flows consisting of “pseudo-actors”, whose sole behavior would be to emit WMSD
configuration files specifying the workflow to be executed in high-throughput mode.

4 Discussion and Outlook

We have described a framework for Grid workflows based on abstractions of com-
mon Grid workflow components such as authentication, data movement, and remote
execution, and monitoring. Abstract workflows, consisting of abstract and possibly
concrete actors provide the workflow designer with common components and work-
flow patterns that can be reused and instantiated to create executable Grid workflows.
A main advantage of this approach is that (a) it frees the designer from making tech-
nology decisions early on in the design process, and (b) at instantiation time, it allows
the user to chose and even combine different concrete technologies such as Globus,
SRB, and Nimrod. In future work we plan to automate the instantiation process of our
framework using a reasoning approach that aims at automating the “wiring” of differ-
ent actor instances, based on their semantic port types [41].

References

1. Berman, F., Wolski, R., Casanova, H., Cirne, W.,Dail, H., Faerman, M., Figueira, S.,
Hayes, J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A., Zagorodnov,
D. : Adaptive computing on the Grid using AppLeS. Parallel and Distributed Systems,
IEEE Transactions on, Vol. 14, Issue 4, 369-382, April 2003.

2. F. Berman, G. Fox, and A. Hey, editors. Grid Computing: Making the Global Infrastruc-
ture a Reality. John Wiley & Sons, 2003.

3. The Condor Project Homepage: http://www.cs.wisc.edu/condor/
4. GRIDS: Grid Research Integration Deployment and Support Center, The

Grid Ecosystem: Software Components for Grid Systems And Applications:
http://www-unix.grids-center.org/r6/ecosystem

5. The Globus Toolkit: http://www-unix.globus.org/toolkit/
6. Storage Resource Broker: http://www.npaci.edu/DICE/SRB/
7. Kepler Project: http://kepler-project.org
8. Taverna Project: http://taverna.sourceforge.net
9. Triana Project: http://www.trianacode.org/

10. Vladimir, S.: Grid Job submission using the Java CoG Kit, IBM Developer Works
11. Nimrod/G Project: http://www.csse.monash.edu.au/~nimrod/nimrodg/
12. AppLeS Parameter Sweep Template (APST) Project: http://grail.sdsc.edu/projects/apst/
13. Configuring Globus Toolkit Logging Services:

 http://www-unix.globus.org/toolkit/docs/3.2/core/admin/configuringlogging.html
14. Abramson, D., Giddy, J., Kotler, L.: High Performance Parametric Modeling with Nim-

rod/G: Killer Application for the Global Grid?, IPDPS'2000, Mexico, IEEE CS Press, 520-
528, USA, 2000.

15. Schwiegelshohn, U., Yahyapour, R..: Attributes for Communication Between Scheduling
Instances, in Global Grid Forum (GGF), December 2001.

16. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: An Exten-
sible System for Design and Execution of Scientific Workflows, In the 16th Intl. Confer-
ence on Scientific and Statistical Database Management(SSDBM), Santorini Island,
Greece, June 2004.

132 I. Altintas et al.

17. NSF/ITR: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences,
http://www.geongrid.org

18. NSF/ITR: Enabling the Science Environment for Ecological Knowledge (SEEK),
http://seek.ecoinformatics.org

19. ROADNet: Real-time Observatories, Applications and Data Management Network,
http://roadnet.ucsd.edu

20. Scientific Data Management (SDM) Center, http://sdm.lbl.gov/sdmcenter
21. Resurgence Project Home Page: http://www.resurgence.unizh.ch/~resurgence/
22. EOL Project: http://eol.sdsc.edu
23. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a

Grid-Enabled System for Scientific Workflows, In the Workflow in Grid Systems Work-
shop in GGF10 - The Tenth Global Grid Forum, Berlin, Germany, March 2004.

24. 24.E.A. Lee et al., Ptolemy II project and system, Department of EECS, UC Berkeley,
http://ptolemy.eecs.berkeley.edu/ptolemyII

25. Liu, X., Liu, J., Eker, J., and Lee, E. A.: Heterogeneous Modeling and Design of Control
Systems, in Software-Enabled Control: Information Technology for Dynamical Systems,
Tariq Samad and Gary Balas (eds.), Wiley-IEEE Press, April 2003.

26. G. Kahn, “The Semantics of a Simple Language for Parallel Programming”, Proceedings
of International Federation for Information Processing Congress 74, pp. 471-475, North
Holland Publishing Co., Aug 1974.

27. E.A. Lee and T.M. Parks, “Dataflow Process Networks”, Proceedings of the IEEE, Vol. 83
No. 5, pp. 773-801, May 1995.

28. Hylands, C., Lee, E. A., Liu, J., Liu, X., Neuendorffer, S., Xiong, Y., Zheng, H. (eds.):
Heterogeneous Concurrent Modeling and Design in Java (Volume 3: Ptolemy II Domains),
Technical Memorandum UCB/ERL M03/29, University of California, Berkeley, CA USA
94720, July 16, 2003.

29. van Laszewski, G., Amin, K., Hategan, M., Zaluzec, N., J., Hampton, S., Rossi, A.,: Gri-
dAnt: A Client-Controllable Grid Workflow System, 37th Hawaii International Conference
on System Sciences (HICSS-37), Hilton Waikoloa Village, Island of Hawaii, January
2004.

30. K. K. Baldridge, W. Sudholt, J. P. Greenberg, C. Amoreira, Y. Potier, I. Altintas, A. Birn-
baum, D. Abramson, C. Enticott, S. Garic, "Cluster and Grid Infrastructure for Computa-
tional Chemistry and Biochemistry", in "Parallel Computing for Bioinformatics", A. Y.
Zomaya (Ed.), John Wiley & Sons, submitted for publication

31. van der Aalst, W., M., P. , Barros, A., P., ter Hofstede, A., H., M., and Kiepuszewski, B.:
Advanced Workflow Patterns, in Conference on Cooperative Information Systems, pp. 18–
29, 2000.

32. I. Altintas, E. Jaeger, K. Lin, B. Ludaescher, A. Memon, A Web Service Composition and
Deployment Framework for Scientific Workflows, In the 2nd Intl. Conference on Web
Services (ICWS), San Diego, California, July 2004.

33. B. Ludaescher, I. Altintas, C. Berkely, D. Higgins, E. Jaeger, M. Jones, E.A. Lee., J. Tao,
Y. Zhao, Scientific Workflow Management and the KEPLER System, special issue of
Distributed and Parallel Systems, to appear, 2005.

34. K. K. Baldridge, J. P. Greenberg, W. Sudholt, S. Mock, I. Altintas, C. Amoreira, Y. Potier,
A. Birnbaum, K. Bhatia, M. Taufer, "The Computational Chemistry Prototyping Environ-
ment", Proceedings of the IEEE Special Issue on Grid Computing, in print

35. W. Sudholt, K. K. Baldridge, D. Abramson, C. Enticott, S. Garic, C. Kondric, D. Nguyen,
"Application of grid computing to parameter sweeps and optimizations in molecular mod-
eling", Future Generation Computer Systems 21 (2005) 27-35

 A Framework for the Design and Reuse of Grid Workflows 133

36. Schmidt, M. W., Baldridge, K. K., Boatz, J. A., Elbert, S. T., Gordon, M. S., Jensen, J. H.,
Koseki, S., Matsunaga, N., Nguyen, K. A., Su, S. J., Windus, T. L., Dupuis, M., Mont-
gomery, J. A., J. Comput. Chem. 1993, 14, 1347-1363

37. GAMESS Home Page: http://www.msg.ameslab.gov/GAMESS/
38. Open Babel: A Package to Decypher Computational Chemistry:

http://openbabel.sourceforge.net/
39. O. H. Ibarra and C. E. Kim, "Heuristic algorithms for scheduling independent tasks on

nonindentical processors," Journal of the ACM, 24(2): 280-289, Apr. 1977.
40. A. Birnbaum, J. Hayes, W. W. Li, M. A. Miller, P. W. Arzberger, P. E. Bourne, H. Casa-

nova. To appear in Proceedings of LNCS, Springer Lecture Notes in Computer Science,
2005.

41. S. Bowers and B. Ludäscher, An Ontology-Driven Framework for Data Transformation in
Scientific Workflows, Intl. Workshop on Data Integration in the Life Sciences (DILS'04),
March 25-26, 2004 Leipzig, Germany, LNCS 2994.

Towards Peer-to-Peer Access Grid

Milena Radenkovic1 and Igor Miladinovic2

1 School of Computer Science & IT,
University of Nottingham,

Nottingham, NG8 1BB, UK
Tel. +44-115-8467670
mvr@cs.nott.ac.uk

2 Telecommunication Research Center Vienna (ftw.),
Tech Gate Vienna,

Donau-City-Strasse 1, 1220 Vienna, Austria
Tel. +43-1-5052830-54
miladinovic@ftw.at

Abstract. The paper is concerned with supporting natural patterns
of scientific collaboration in Access Grid environments. We reveal that
no current approach to Access Grid allows dynamic session invocation
within on-going Access Grid sessions nor workflow driven session trig-
gering among users involved in that workflow. A model for a lightweight
signaling architecture integrated within Access Grid is proposed that al-
lows transparent demand-driven session management. The architecture
is configurable both in terms of dynamically changing user preferences
and resource requirements. The core of the architecture is the advanced
SIP stack embedded both within Access Grid nodes and heterogenous
end nodes. This is important in order to allow maximum flexibility of
audio,video and workflow presentation to the end users.

Keywords: Access Grid, P2P, SIP, Video Conferencing.

1 Introduction

Access Grid (AG) [5] is already becoming widely accepted standard for collabo-
rative environments predominantly used within GRID and e-Science community.
Despite that, it is still a long way from providing truly satisfactory collaborative
experience for the end users. Substantial research effort has been invested in ex-
tending and improving various aspects of AG. These efforts are mainly focused
around richer collaborative visualization facilities in AG [7], richer user semantic
descriptions [9] and record and replay facilities that keep provenance of the past
meetings for subsequent use [10]. In this paper we focus on the limited interac-
tion space within active AG sessions and propose mechanisms for tailoring them
to better suit patterns of scientific collaboration. Our original motivation came
from multiple HCI and user requirements analysis [11] that found that during
structured meetings and workshops, people tend to be more productive in an

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 134–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Towards Peer-to-Peer Access Grid 135

unstructured manner with lots of brainstorming, problem solving, casual con-
versation and spontaneous idea generation. Flat single AG session structure that
follows traditional strict turn-taking teleconferencing scenario does not allow for
any of that and often results in very long meetings with several tens of partici-
pants being silent during the entire meeting and only few active speakers. This
paper argues that in order to provide more natural and effective meetings, AG
needs to support multiple modes of interaction, from very structured to more
informal and casual. For example, this refers to enabling the users to have richer
discussions about spontaneous ideas among a subset of participants without
disturbing the main discussion topic of the meeting. We propose a lightweight
signaling architecture based on advanced SIP that is integrated within the cur-
rent AG architecture and serves as the main enabling mechanism for moving
towards more natural and productive AG. Furthermore we argue that peer-to-
peer paradigm is much better suited for future streaming Grid applications such
as audio, video and scientific instrumentation applications. We believe that cur-
rent Web services have a limited time span in terms of being the only building
block for AG and other streaming collaborative applications in e-Science. Sci-
entific collaborative scenarios should at least include support for scenarios such
as: spotting trends in streaming scientific data or spotting cross references in
newly added annotations, alerting involved users by triggering/initiating ses-
sions among them; or enabling users to transparently start/end sessions among
each other. Even though fundamental and important, these scenarios are not yet
supported in either AG1.0 [5] or emerging proposals for AG2.0 [2].

The reminder of this paper is organized as follows. Section 2 discusses current
AG and SIP architectures, and identifies their limitations in a systematic man-
ner. Section 3 introduces architectural overview of the proposed infrastructure
that aims to provide support for a configurable, more ubiquitous and dynamic
AG. This infrastructure is based on a collection of standardized messages that
allow inspection and update of resource properties and transparent triggering of
sessions among participants. Section 4 describes SIP protocol stack needed for
basic AG conferences. Section 5 discusses more advanced SIP features for more
advanced AG conferences. Session 6 concludes the paper and outlines future
work.

2 Background Information

2.1 Access Grid

Access Grid (AG) aims to develop a large scale collaborative environment based
on the idea of video walls that are dramatically scaled up in terms of the num-
ber of simultaneous participants, flexibility and functionality. AG combines data
resources, computational services and people in order to provide support for the
scientific method. The two key features of the scientific method include workflows
and provenance. When we talk about ’workflow’ in this paper we mean the spec-
ification and execution of ad-hoc in-silico experiments using scientific resources.

136 M. Radenkovic and I. Miladinovic

A workflow-based approach allows the e-Scientist to describe and enact their
experimental processes in a sharable, structured, repeatable and verifiable way.
Provenance data can be broken down into two categories: derivation data and
annotations. Derivation data provides the answer to questions about what initial
data was used for a result, and how was the transformation from initial data to
result achieved. In the case of an in silico experiment that consists of coordinat-
ing a set of services, the derivation data is about which services were used and
how did they transform the initial inputs into the overall result. Annotation data
provides more contextual information that might be of interest: who performed
an experiment, when, did they supply any comments on the specific methods and
materials used. AG utilizes this idea to allow users to collaboratively monitor and
discuss their Grid resources and services, use their computer-based repositories
and computational analysis adopted for testing hypothesis or to demonstrate
known fact. The underlying infrastructure also aims to allow dynamic forma-
tion of virtual groups/sub-groups to solve problems, describe them, search for
resources and support provenance.

In order to make these high-level AG goals more specific, we give a brief
architectural overview of AG. AG consists of a number of AG nodes distributed
across multiple sites that provide support for group to group communication
without imposing constraints on bandwidth or encoding algorithms i.e. multi-
ple cameras can to be used simultaneously and at higher quality. AG is heavily
multicast based with only one statically pre-allocated multicast group per vir-
tual venue. The virtual venue software underlines web pages providing abstract
meeting rooms that implicitly provide scoping, presence and persistence of the
AG sessions. AG sessions are initiated statically, prior to start of the session
by the AG managers. Protocol standards used for audio, video, text-based and
network communication are still very basic and they include RAT, VIC, MUD
and H.323 respectively. Protocol standards used for audio, video, text-based and
network communication are still very basic and they include RAT, VIC, MUD
and H.323 respectively. AG 2.0 Reference Release [2] has proposed a more flexi-
ble layered AG architecture and a set of new services including identity, network
and virtual venues services. In order to provide a more usable and configurable
sessions, AG2.0 design has introduced venues server client interface, venues de-
scription standard, per venue scheduling and authorization and venues server
configuration.

This design methodology of AG has been adopted for its simplicity and ro-
bustness. However, it also has a number of adverse implications that are con-
cerned with its scalability and ubiquity:

– Current AG sessions allow no ad-hoc and on-demand user driven session
management because they are statically configured.

– AG nodes are still not wide spread and their user interfaces are less then
user friendly.

– Even though there are multiple projects underway (including initiatives of
more dynamic and flexible Access Grid 2.0) to link more novel devices, there
is still no standardized architecture to support this transparently within AG.

Towards Peer-to-Peer Access Grid 137

Despite the additional services in AG2 and being heavily based on multicast,
both generations of AG lack real control and flexibility that individual end users
have because of the key role AG nodes have. Some combination of P2P synchro-
nization, signaling and notification is necessary within the AG in order to be
better suited for large communities working and discussing wide annotations of
data collections and workflows. We aim to enable AG to be gracefully extended
both in terms of heterogeneous clients (i.e. not only AG nodes) and new forms
of user communication and data integration.

2.2 Session Initiation Protocol

The Session Initiation Protocol (SIP) [15][17] is an application layer peer-to-peer
signaling protocol for Internet Protocol (IP) networks. It is able to establish,
modify and terminate any kind of multimedia sessions. SIP was originally devel-
oped by the Multiparty Multimedia Session Control (MMUSIC) working group
of the Internet Engineering Task Force (IETF). Meanwhile, a SIP working group
has been formed that continues the development of this protocol.

Like many other protocols in the Internet today, SIP is a text-based protocol.
Messages are divided into requests and responses. There are six types of requests
defined in the SIP specification [15]: INVITE, ACK, BYE, CANCEL, OPTIONS
and REGISTER. Some SIP extensions define new requests that provide addi-
tional functionality. For example, the SIP extension for Instant Messaging [3]
introduces the MESSAGE request used for exchange of instant messages. Each
SIP requests, with the exception of the ACK request, is confirmed by a response.
Responses are divided into provisional and final responses. Provisional responses
are optional and they provide additional information about processing of a re-
quest. Final responses, in contrast, represent a definitive answer to a request.

A SIP message comprises a message header and optionally a body. The header
is composed of several header fields that carry information about the message,
or additional information for message routing. The body of a SIP message usu-
ally contains information about the session. For audio and video sessions, this
information is mainly described by the Session Description Protocol (SDP) [6].
However, the body of a SIP message can contain any MIME [4] type and hence,
it can be used to carry content of an instant message, for example. The me-
dia data in a real-time session are usually carried by the Real Time Transport
Protocol (RTP) [16].

Basically, there are two types of entities in SIP – User Agents (UAs) and
network servers. A UA represents an end point for a SIP network. A user terminal
is a typical example of a UA. Network servers are divided into proxy servers,
redirect servers, and registrar servers. A proxy server is an application layer
router that forwards SIP requests to the next hop server that can be either a
UA or another network server. A redirect server, in contrast, replies an incoming
request with a response that contains the address of the next hop server. This
means that it simply redirects incoming requests instead of forwarding them.

In order to uniquely identify its resources, SIP has its own addressing mech-
anism. Each SIP resource is identified by a special type of Uniform Resource

138 M. Radenkovic and I. Miladinovic

SIP
UA

SIP
UA

INVITE

OK

ACK

Media Data

OK

BYE

Fig. 1. Basic SIP Call

Identifier (URI), called SIP URI. On the other side, each SIP user is provided
with a unique SIP URI that is referred to as address-of-record (AOR). In order
to be reachable, a user has to register at a SIP registrar server with this user’s
AOR and the SIP URI of the device that this user is currently using. This URI
is called contact address. The registrar server stores these bindings of AOR to
zero or more contact addresses for each user. This information is used for rout-
ing of messages, so that a registered user can be reached independently of the
device that this user is currently using. A registrar server is often combined with
a proxy or with a redirect server, so that the separation between them is only
logical.

Figure 1 shows the message flow in the most simplest scenario of the initial-
ization of a SIP session. There are no network servers between SIP UAs, and all
messages are exchanged directly between them. The initiation of a session com-
prises three messages: INVITE, OK, and ACK. This is referred to as three way
handshake. After the initialization, media data between UAs can be exchanged
using RTP (marked with dotted line). A session is terminated when one of the
UAs sends the BYE request that is confirmed with an OK response.

2.3 Advanced SIP Services

The basic SIP specification defines methods needed for session initialization,
modification, and termination. Additionally, there is a possibility to query the
capabilities of a server using the OPTIONS request. These features do not fulfill
all the needs expected from a modern signaling protocol today. On the other
side, SIP is designed to be an extensible protocol, and it allows introduction of
new methods and header fields. There is a number of SIP extensions that have
been defined in the last few years. They provide SIP with additional features,
including messaging and event notification.

In this section we briefly describe some SIP extensions that are directly rel-
evant for video conference, and can be applied on AG. SIP-Specific Event No-
tification [12], for example, enables asynchronous notification of users whenever
an event occurs. First, a user has to subscribe for a resource and gets the cur-
rent state of it. For the duration of the subscription, this user will be notified

Towards Peer-to-Peer Access Grid 139

after any change of the state of this resource. This extension does not define any
type of event, but only a general framework. Additional, so-called event packages
must be defined for each particular event. One example is the Presence event
package [13], used for Presence Service in SIP. The presence information can be
used to start a conference when all the potential participant are available. We
will discuss this scenario in Section 5.2.

Another SIP extensions useful in a conference is the extension for Instant
Messaging [3]. It provides SIP with the capability of exchanging instant messages
between users. These users can be involved in a conference, but need not to be.

The identity of participants can be distributed along participants in a con-
ference. The identity is represented trough the SIP URI of participants. This
feature is useful, for example, for initialization of sub-conferences within an ex-
isting conference. We will discuss sub-conferences in Section 5.1.

In a conference, it is usually desired that participant can dynamically join
in the conference. This means that existing participants need a mechanism to
invite other users to participate. The SIP REFER method [18] can be used for
this purpose. It simply refers a user to contact a certain resource, for example a
conference server.

The IETF working group for Centralized Conferences (XCON) [1] is stan-
dardizing a suite of protocols for centralized multimedia conferences. Privacy,
security, and authorization mechanisms play an important role in the proposed
solution. A basic floor control will also be provided. XCON uses SIP as the
reference signaling protocol in their examples.

3 Proposed Architecture

As mentioned in Section 2.1, in the current AG architecture there no signaling
protocol. Media data are distributed over certain multicast addresses and any
user that obtains these multicast addresses and port numbers is able to receive
data. Participants in a conference are not aware about identities of other partic-
ipants. There is no possibility to easily start an add-hoc sub-conference, which
is useful when a user wants to discuss a particular topic within a sub-group of
conference participants.

To solve these problems, we propose the introduction of a signaling protocol
in the AG architecture. More concrete, as the signaling protocol we propose SIP
(Section 2.2). Figure 2 shows the architecture of a SIP enabled AG Node and
its connection to the network. Because of clarity, the Echo Canceller and Mixer,
as well as the Control Computer for audio streams are not shown in the figure.
Dotted lines indicate SIP traffic and the solid ones media data. The figure also
shows some single UAs that participate in the conference. They can be running
on a Personal Computer (PC) or even on a Personal Digital Assistant (PDA)
[19].

The new component in the AG node architecture is the SIP Stack. It is re-
sponsible for the SIP communication with other SIP components. On the other
side, it has an interface with existing AG node components, including display

140 M. Radenkovic and I. Miladinovic

Network

Display
Computer

SIP UA
Stack

SIP
UA

SIP
UA

Audio
Capture

Computer

Video
Capture

Computer

AG Node

Individual
users

Fig. 2. AG Node architecture with SIP

v=0
o=AGNode1 9847392 3948273 IN IP4 129.131.88.99
s=AG session
m=audio 32000 RTP/AVP 0
c=IN IP4 234.5.66.7/127
m=video 34000 RTP/AVP 34
c=IN IP4 234.5.66.32/127
m=video 34000 RTP/AVP 34
c=IN IP4 234.5.66.33/127
m=video 34000 RTP/AVP 34
c=IN IP4 234.5.66.34/127
m=video 34000 RTP/AVP 34
c=IN IP4 234.5.66.35/127

Fig. 3. SDP description with multiple media streams

computer, video capture computer, and audio capture computer. These inter-
faces need not necessarily to be standardized. However, this would bring more
flexibility and allow to combine components of different vendors.

An SIP enabled AG Node obtains session parameters, such as multicast ad-
dresses, port numbers, and codecs for audio and video streams, over SIP. These
session parameters are described in SDP format [6]. SDP is capable of specifying
multiple media streams, each of which can have an own codec, IP-address (that
can also be a multicast address), and port number. Given that each AG Node
sends out four video streams, and receives multiple streams, this feature of SDP
is very important for AG conferences.

Figure 3 shows an example of a SDP description with multiple media streams.
This description includes one audio stream in PCMU codec, and four video
streams in H.263 codec. This is indicated by the numbers at the end of the
media (m) line. Each of these streams is distributed over a separate multicast
address that is specified in the contact (c) line. More information about SDP
can be found in [6].

Towards Peer-to-Peer Access Grid 141

4 Basic Operations

This section describes basic SIP operation in an AG conference, including initial-
ization of a conference, participation in a conference, and leaving a conference.
Although SIP can support centralized and decentralized conferences [14], we
focus on centralized conferences only, because they offer better control of the
conference participants. Basically there are two types of centralized conferences:
dial-in and dial-out. They have in common that they use a central component
for conference management that is called Conference Server (CS). Therefore, we
can differentiate between a dial-in and a dial-out CS.

4.1 Initialization of a Conference

Dial-in conferences are created by an AG node. This node generates a unique
Conference Identifier (CID) and creates a conference SIP URI. Using this SIP
URI, the AG node initialize a point-to-point SIP session with the conference
server using the same set of messages as shown in the upper part of Figure 1.
At this point, the only participant in this conference is the AG node that has
initiated the conference. Other nodes can participate only if they obtain the
conference SIP URI.

Dial-out conferences are initiated by CS. They are usually pre-arranged with
a specified start time and a list of initial participants. Additionally, an end time
can also be specified. At the start time, CS generated a unique conference SIP
URI, and initiate a SIP session with each participant from the list. These sessions
are logically associated in a single conference session by CS.

4.2 Participation in a Conference

Basically, there are two possibilities to participate in a conference for both, dial-
in and dial-out conferences. The first possibility is when an AG node, sends an
INVITE message to the conference server. A precondition for this is that this
AG node obtains the corresponding conference SIP URI. It can be distributed
by several means, including Web, E-mail, Short Message Service (SMS), or SIP.
The SIP REFER message, defined in [18], can be used for this purpose. This
message demands from a SIP UA, which has received it, to initiate a session
with the SIP URI given in that message.

Let us suppose that there is a conference with there AG nodes, and a further
AG node is to be invited in this conference. Figure 4 shows this scenario. AG
nodes 1, 2, and 3 are involved in a conference and at some time AG node 3
decides to invite AG node 4 to participate in the conference. In order to do this,
AG node 3 sends a REFER request with the conference SIP URI to AG node
4 (marked with 1 in Figure 4). AG node 4 replies this message with a 200 OK
response (2), and sends an INVITE request with the conference SIP URI to CS
(3). If CS allows AG node 4 to participate in the conference, it replies with a
200 OK (4), and finally, AG node 4 confirms this response with an ACK request
(5). As mentioned before, the conference SIP URI can also be distributed by

142 M. Radenkovic and I. Miladinovic

SIP
Conference

Server

AG
Node 1

AG
Node 2

AG
Node 3

3

2

4

AG
Node 4

5

1

Fig. 4. Participation in a Conference

other means, like web, e-mail, or sms. In that case, steps 1 and 2 in Figure 4 are
omitted.

The second possibility for an AG node to participate in a conference is that
this node is invited by CS. CS is usually instructed by an AG node, which
actively participates in the conference, to do this. In our example, AG node 3
would sent a REFER request with the SIP URI of AG node 4 to CS. This would
instruct CS to send invite AG node 4 to participate in the conference.

4.3 Leaving a Conference

When an AG node wants to leave a conference, it simply sends a BYE message
to CS and stops receiving and sending video and audio streams. CS replies this
message with a 200 OK response as shown in the lower part of Figure 1. Other
participants can transparently continue communication.

5 Advanced Operations

Until now, we have seen how SIP can be used in AG for providing basic confer-
encing functions. These functions are also present in the today’s AG architecture,
although they are realized on a different way (see Section 2.1). In this section we
will go into some advanced functionalities that are not provided by the today’s
AG architecture, but that can be provided with our architecture.

5.1 Sub-conferences

An AG conference usually involves several AG nodes. There is also growing need
that individual users attend such a conference [19], giving the AG architecture
a p2p character. These users participate in the conference with their PCs or
PDAs. Because of limited resources, these users should have the possibility to
choose a subset of the conference streams that they want to receive [19]. This
functionality is provided by SIP as stated in Section 3. In this section we will
use term participant meaning either an AG node or an individual user.

In an AG conference there is often a need that certain issues, which are
not of general interest, are discussed under a subset of conference participants.
For example, it is useful that geographically distributed participants are able

Towards Peer-to-Peer Access Grid 143

SIP
Conference

Server

AG
Node 1

SIP Presence
and Registrar

Server

AG
Node 2

AG
Node 31

2

3

4

5

6

7

7

8

8

Fig. 5. Conference initialization with Presence service

to exchange their opinions about the current presentation or to clarify some
ambiguities in a small group. A special case is when this group consists of only
two participants. Given that this kind of communication is common in everyday
life, the AG architecture should be able to support such sub-conferences.

From the point of view of SIP, such a sub-conference is a new conference
that has to be initiated. A precondition is that the participants are aware of
other participants’ identities (SIP URIs). This information can be provided us-
ing SIP extension for multiparty conferencing [8], or using SIP event notification
framework described in Subsection 2.3 with an appropriated event package. De-
pending on the number of participants, there are several possibilities to realize a
sub-conference. In the special case when only two participants are involved in a
sub-conference, it is necessary to initiative a new two-party session between these
two participants as shown in Figure 1. In any other case, a new SIP conference
has to be initiated on the same way as described in Subsection 4.1. We propose
a hierarchical structure of CIDs in order to indicate which sub-conferences be-
long to the same conference. Therefore, sub-conferences CID should contain the
conference CID and an extension which must be unique for this sub-conference.
In this way, CS knows the organization of the conferences and it is able to bet-
ter manage them. For example, it can be allowed that only participants in a
conference can participate in its sub-conference.

Media data in a sub-conference can be exchanged in two ways. First, if there
are just a few streams, they can be exchanged over unicast using an RTP mixer.
Second, they can be exchanged over multicast, similarly to streams in a AG
conference.

5.2 Access Grid Conference with Presence Service

The presence service can be excellently combined with the conferencing since
it provides information about availability of potential conference participants.
For example, it is possible to automatically start a conference as soon as all the
potential participants become available. In this section we want to show how the
presence service can be used in our architecture.

Let us consider a scenario where AG node 1 wants to start a conference with
AG nodes 2 and 3. However, in order to be sure that other nodes are available,
AG node 1 will request presence information of AG nodes 2 and 3, and it will get

144 M. Radenkovic and I. Miladinovic

notified when AG nodes 2 and 3 become available. Figure 5 shows the message
flow in this scenario. For the sake of clarity, the presence and registrar server
are placed together. This is not really necessary, but these two servers need to
be able to communicate with each other. Note that presence information can be
obtained by several sources, the registrar server is just one of them. A common
used source are SIP UAs (in our case AG nodes), enabling users to state their
presence information.

First, AG node 1 goes online and registers at the registrar server (1). Note
that Figure 5 shows only the requests – in fact each of them is followed by a
response. Thereafter, AG node 1 subscribes for the presence information of AG
nodes 2 and 3 (2). At some time, AG nodes 2 and 3 also go online and register
at the register server (3,4). AG node 1 gets notified about this event (5), creates
an empty conference at the conference server (6), and invites AG nodes 2 and 3
to participate by sending corresponding REFER requests (7). In the last step,
AG nodes 2 and 3 join in the conference (8).

In this scenario, presence server and conference server are not able to com-
municate with each other. This is the reason why AG node 1 has to start the
conference. However, if presence and conference server are able to communicate,
conference server can be implemented to start the conference by itself in a dial-
out manner when all the participants become available. For example, conference
server can subscribe for presence information of participants by itself and it will
be notified when they become available.

5.3 Other Operations

There is a number of other advanced operations required or desired in a mul-
timedia conference. Privacy, security, floor control, and authorization are some
of them. All these operation are hardly possible without a signaling protocol.
Introducing SIP to the AG architecture could be the right step towards the imple-
mentation of these features in the AG architecture. There is a large community
of IETF engineers that improve SIP conferencing capabilities permanently. An
important role here plays the XCON working group. Although they are devel-
oping a solution that is independent of any signaling protocol, their examples
uses SIP as the reference signaling protocol.

6 Conclusion

The paper addressed design of Access Grid environment that actively supports
collaboration among large numbers of heterogenous simultaneous users. With the
rapid increase in deployment of AG applications and large AG sessions, there
might be severe consequences to the end user experiences if problems of static,
pre-configured sessions and dominant role of AG nodes are ignored. The pa-
per introduced lightweight SIP-enabled AG architecture that allows peer-to-peer
sub-session (sessions within sessions) and session management. This is based on a
collection of standardized messages that allow inspection and update of resource

Towards Peer-to-Peer Access Grid 145

properties and transparent triggering of sessions among participants. A number
of real-world experiments should be conducted to examine the behaviour of such
AG in real networks. Our immediate future plans are to integrate and evaluate
our prototype proposal with the real semantic Grid middleware (myGrid) for
use in bioinformatics community.

References

1. http://www.ietf.org/html.charters/xcon-charter.html.
2. www-unix.mcs.anl.gov/fl/events/agtech/materials/access
3. B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, and D. Gurle. Session Ini-

tiation Protocol Extension for Instant Messaging. RFC 3428, Internet Engineering
Task Force, December 2002.

4. N. Freed and N. S. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. RFC 2045, Internet Engineering
Task Force, November 1996.

5. T. A. Grid. http://www.accessgrid.org/.
6. M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC 2327,

Internet Engineering Task Force, April 1998.
7. G. Kong, J. Stanton, S. Newhouse, and J. Darlington. Collaborative Visualisation

over the Access Grid using the ICENI Grid Middleware. In UK e-Science All
Hands 2003, Nottingham, UK, September 2003.

8. I. Miladinovic and J. Stadler. Closed Conference Signalling using the Session
Initiation Protocol. Internet Research: Electronic Networking Applications and
Policy, 13(2):126–133, April 2003.

9. T. A. R. Ontology. http://www.aktors.org/ontology/.
10. T. C. project. http://www.aktors.org/coakting/.
11. M. Radenkovic, R. Stevens, and A. Wipat. Requirements for Performing e-Science

Experiments. In Requirements Capture for Collaboration in eScience, Edinburgh,
January 2004.

12. A. Roach. Session Initiation Protocol (SIP)-Specific Event Notification. RFC 3265,
Internet Engineering Task Force, June 2002.

13. J. Rosenberg. A Presence Event Package for the Session Initiation Protocol (SIP).
Internet draft, work in progress, Internet Engineering Task Force, January 2003.

14. J. Rosenberg and H. Schulzrinne. Models for Multi Party Conferencing in SIP.
Internet draft, work in progress, Internet Engineering Task Force, July 2002.

15. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261, Internet
Engineering Task Force, June 2002.

16. H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 1889, Internet Engineering Task Force,
January 1996.

17. H. Schulzrinne and J. Rosenberg. The Session Initiation Protocol: Internet-Centric
Signaling. IEEE Communications Magazine, 38(10):134–141, 2000.

18. R. J. Sparks. The Session Initiation Protocol (SIP) Refer Method. RFC 3515,
Internet Engineering Task Force, April 2003.

19. M. Thorson, J. L. adn Gabriel Maajid, K. Park, A. Nayak, P. Salva, and S. Berry.
AccessGrid-to-Go: Providing AccessGrid Access on Personal Digital Assistants.
White paper, Electronic Visualization Laboratory, 2002.

A Service Oriented Architecture for Integration
of Fault Diagnostics

Xiaoxu Ren2, Max Ong2, Geoffrey Allan2, Visakan Kadirkamanathan2,
Haydn Thompson1,2, and Peter Fleming1,2

1 Rolls-Royce University Technology Centre in Control and Systems Engineering
2 Department of Automatic Control and Systems Engineering,

University of Sheffield,
Sheffield S1 3JD, UK

{X.Ren, M.Ong, Jeff.Allan, Visakan, H.Thompson, P.Fleming}@shef.ac.uk

Abstract. Many model-based fault diagnosis approaches have been pro-
posed so far and some of them have been put into industrial practices.
But for modern complex processes, due to the variable nature of faults
and model uncertainty, no single approach can diagnose all faults and
meet different contradictory criteria. In this paper, the importance of
integration of different fault diagnostic schemes in a common frame-
work is emphasised. A service-oriented architecture for the integration is
proposed based on Grid technologies. As an implementation, a decision
support system for the gas turbine engine fault diagnosis is presented
and some deployed services are discussed.

1 Introduction

In the aviation industry, a great number of efforts have been put for reducing
the number of in-flight engine shutdowns, aborted take-offs and flight delays
through the use of the engine fault diagnostic and health monitoring technolo-
gies. Among these technologies, model-based approaches are promising modern
approaches for aero engine fault detection and isolation (FDI). Model-based FDI
is based upon the idea that measurements from dissimilar sensors are function-
ally related because they are all derived from the same state of the system. Any
violation of these relationships indicates the occurrence of faults. Although the
model-based approach is commonly accepted as a promising approach for fault
diagnosis, due to model uncertainties, intense computational requirements and
unknown complicated nature of fault diversity, there is no single widely accepted
generic solution of fault diagnosis. Researchers working in this area have pro-
posed different approaches of using different algorithms under the name ‘model-
based’ [8,14,5]. Each approach, however, has its own focus and none of them is a
universal approach, neither suitable nor available for all fault types. To overcome
these shortfalls and exploit advantages of different approaches, an integration of
different methods or hybrid schemes are highly recommended [15, 9].

The modern aero engines are being instrumented with engine monitoring
units possessing significantly greater capability to record and analyse data. Each

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 146–157, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Service Oriented Architecture for Integration of Fault Diagnostics 147

engine on a civil airliner is capable of generating at least 1Gbyte of data per flight.
As a result in future one can envisage terabyte of engine monitoring data being
transmitted every day for analysis of a whole fleet. Thus the challenge is not
only provide a set of fault diagnostic tools for FDI and high-level maintenance
decision support, but also provide the suitable infrastructure to manage the large
amounts of data and perform the high performance, high throughput computing
to support these fault diagnostic algorithms and decision-making.

With the latest development in Internet and Intranet technologies, especially
with the development of the Grid computing, it is now possible to provide dif-
ferent algorithms as individual Grid services and combine these services dynam-
ically to generate a ‘virtual organisation’ for fault diagnostic purposes. In this
paper, a service-oriented architecture on the Grid for integration of different
fault diagnostic schemes is proposed. Different fault diagnosis algorithms and
analysis tools are provided as Grid services in this framework. Through config-
uration and workflow management, these services can be dynamically invoked
to form a flexible distributed decision support environment for aero engine fault
diagnosis and maintenance.

This paper is organised as follows: Section 2 presents an overview of model-
based fault diagnosis. Different approaches developed for model-based fault diag-
nosis are summarised and compared. In Section 3, the concept of Grid computing
is introduced. The service-oriented architecture on the Grid for fault diagnosis
is proposed and the advantages are highlighted. In Section 4, the DAME project
is introduced and some experimental work on the FDI integration are presented.
The developed gas turbine engine simulation services for fault detection and
case-based reasoning services for high-level decision support are detailed. Fi-
nally, some concluding remarks are made.

2 Model-Based Fault Diagnosis

Model-based approaches are widely accepted modern approach for solving fault
diagnosis problems. Model-based fault detection and isolation focuses on dy-
namic consistency (parity) relations and parameter estimation. The basic pro-
cedure of using model-based FDI is firstly to generate the analytic symptoms
by using analytical knowledge about the process based on process observation.
Then the generated analytic symptoms as well as heuristic symptoms are anal-
ysed at the fault diagnosis stage for finding the type, size and location of a fault
as well as its time of detection.

In general, model-based FDI is a two-step procedure: residual generation
and residual evaluation. Residual generation is a process in which the input
and output of a system are monitored and manipulated to generate a signal or
vector, the so-called residual. The residual should be normally zero or close to
zero when no fault is present, but is distinguishably different from zero when a
fault occurs. Residual generation is thus a procedure for extracting fault symp-
toms from the system, with the fault symptom represented by the residual sig-
nal. The residual should ideally carry only fault information. To ensure reliable

148 X. Ren et al.

FDI, the loss of fault information in residual generation should be as small as
possible.

Residual evaluation is the analysis of the residual to examine the likelihood
of faults. A decision is made based on the knowledge about the process and the
symptoms. If a fault has occurred, more analysis should be made to isolate or
even identify the fault. A decision process may consist of a simple threshold test
on the instantaneous values or moving averages of the residuals, or it may consist
of methods of more sophisticated decision theories.

From the various approaches used for the residual generation and evaluation,
there are roughly four different approaches used by model-based FDI:

– Observer approach or parity relations approach. The underlying idea of ob-
server approach is to estimate the system outputs from the available inputs
and output of that system. The residual will then be a weighted difference
between the estimated and actual outputs. In a similar way, the parity rela-
tions approach is based either on a technique of direct redundancy, making
use of static algebraic relations between sensor and actuator signals or alter-
natively, upon temporal redundancy, when dynamic relations between inputs
and outputs are used.

– Parameter estimation approach. This approach makes use of the fact that
component faults of a dynamic system can be thought of as reflected in the
physical parameters of the system, e.g. friction or mass velocity resistance.
A fault is then can be detected through the parameter estimation or model
identification.

– Statistical approaches. Mainly used to improve the fault detection capability,
statistical approaches such as the generalised likelihood ratio (GLR) test can
be used to find changes of the residual signal more quickly and accurately.
Principle component analysis (PCA) and Fisher discriminant analysis (FDA)
are the most widely used techniques for dimensionality reduction and pattern
classification on FDI.

– Qualitative approach. The qualitative approach is based upon the concept of
a qualitative model which unlike its quantitative counterpart only requires
declarative (heuristic) information. An expert system, for example, is one of
the quantitative approaches that use if-then rules to represent the human
knowledge of the relation between the normal/abnormal system behaviour
and the causes of faults. The fault tree approach traces the evolution of the
fault through the dynamic system described by a fault tree, event trees or
causal networks. There are also qualitative model-based approaches which
use a qualitative model derived directly from the physical laws of the system
under consideration. Bond Graphs and Petri Nets, for example, can be used
to assist this modelling purpose.

In general, a fault diagnosis technique should be able to complete the follow-
ing two main tasks:

– detect and isolate different faults occurring in a process, which include sensor
faults, actuator faults and component faults.

– detect and isolate incipient faults as well as abrupt faults.

A Service Oriented Architecture for Integration of Fault Diagnostics 149

T
ab

le
1.

A
co

m
pa

ri
so

n
of

di
ffe

re
nt

m
od

el
-b

as
ed

ap
pr

oa
ch

es
fo

r
F
D

I

FD
I

Sc
he

m
e

Su
ita

bi
lit

y
P

ro
m

pt
ne

ss
an

d
Se

ns
iti

vi
ty

D
es

ig
n

an
d

Im
pl

em
en

ta
tio

n
M

od
el

lin
g

an
d

R
ob

us
tn

es
s

O
bs

er
ve

r
an

d
Su

ita
bl

e
fo

r
fa

ul
t

de
te

ct
io

n
R

ea
ct

io
n

to
bo

th
ab

ru
pt

D
es

ig
n

pr
oc

ed
ur

e
is

N
on

lin
ea

r
ob

se
rv

er
is

di
ffi

cu
lt

Pa
rit

y
re

la
tio

n
an

d
iso

la
tio

n
in

ac
tu

at
or

s
an

d
in

ci
pi

en
t

fa
ul

t
is

fa
st

.
sy

st
em

at
ic

an
d

sim
pl

e.
to

de
sig

n.
M

at
ur

e
te

ch
ni

qu
es

ap
pr

oa
ch

es
an

d
se

ns
or

s.
Se

ns
iti

ve
to

se
ns

or
fa

ul
t.

E
as

y
to

im
pl

em
en

t.
ar

e
av

ai
la

bl
e

fo
r

ro
bu

st
ob

se
rv

er
.

Pa
ra

m
et

er
Su

ita
bl

e
fo

r
fa

ul
t

de
te

ct
io

n
R

ea
ct

io
n

to
ab

ru
pt

fa
ul

ts
D

es
ig

n
pr

oc
ed

ur
e

is
N

on
lin

ea
r

sy
st

em
pa

ra
m

et
er

es
tim

at
io

n
an

d
iso

la
tio

n
in

sy
st

em
is

slo
w

.M
or

e
su

ita
bl

e
fo

r
sy

st
em

at
ic

bu
t

no
t

sim
pl

e.
es

tim
at

io
n

is
po

ss
ib

le
to

ha
nd

le
.

ap
pr

oa
ch

co
m

po
ne

nt
s.

in
ci

pi
en

t
fa

ul
ts

.
D

iffi
cu

lt
to

im
pl

em
en

t.
R

ob
us

tn
es

s
de

pe
nd

s
on

m
et

ho
ds

us
ed

.

St
at

ist
ic

al
Su

ita
bl

e
fo

r
bo

th
fa

ul
t

D
ep

en
d

on
m

et
ho

ds
us

ed
,

D
es

ig
n

pr
oc

ed
ur

e
is

K
er

ne
ld

en
sit

y
es

tim
at

io
n

is
ap

pr
oa

ch
de

te
ct

io
n

an
d

iso
la

tio
n.

re
ac

tio
n

to
ab

ru
pt

fa
ul

ts
sy

st
em

at
ic

.
po

ss
ib

le
to

ha
nd

le
.V

er
y

R
ob

us
t.

co
ul

d
be

slo
w

.
E

as
y

to
im

pl
em

en
t.

Q
ua

lit
at

iv
e

Su
ita

bl
e

fo
r

fa
ul

t
iso

la
tio

n.
R

ea
ct

io
n

to
in

ci
pi

en
t

D
es

ig
n

is
di

ffi
cu

lt
Su

ita
bl

e
sy

m
bo

lic
m

od
el

is
no

t
ap

pr
oa

ch
fa

ul
ts

is
us

ua
lly

slo
w

.
E

as
y

to
im

pl
em

en
t.

ea
sy

to
ob

ta
in

.V
er

y
ro

bu
st

.

150 X. Ren et al.

While at the same time, a fault diagnosis scheme should also consider follow-
ing criteria for better fault diagnosis performance:

– Promptness of fault detection
– Sensitivity to incipient faults
– False alarm rate and missed fault detection
– Incorrect fault identification

Although different model-based approaches are designed to solve fault diag-
nosis problems, each approach has its own focus and none of the above mentioned
methods is a generic solution for complex modern system fault diagnosis. This
is due to the complicated nature of the monitored system and faults, the ap-
plicability of different modelling approaches or the insufficient knowledge about
the monitored process. Table 1 is a summarised comparison of different selected
model-based approaches for fault diagnosis. From this comparison, it is clear
that none of these approaches can fully satisfy the requirements of modern fault
diagnosis such as promptness, accuracy and sensitivity to faults. It is commonly
agreed that hybrid schemes would provide better solutions for future complex
system fault diagnostics [1, 11]. Thus an evaluation of different FDI approaches
and the integration of assorted FDI approaches in an open computational en-
vironment are crucial. Additionally, it is important to consider how these ap-
proaches should be used in conjunction to provide the most accurate diagnosis
in the decision-making process.

Another restriction of using some model-based FDI techniques often lies with
the inherent demands for intensive computing power for modelling and simula-
tion. These computation requirements also limit its application on large scale
complex systems. The Grid technology provides the necessary high-performance,
high-throughput computing power to overcome these restrictions. The distributed
computing structure and the organised resource sharing features provide ex-
cellent opportunities to integrate different FDI schemes to obtain better fault
diagnostic performance.

3 Service-Oriented Architecture on the Grid for FDI
Integration

Service-oriented architecture (SOA) is not a new concept. The early service-
oriented architecture uses the Distributed Component Object Model (DCOM)
[12] or Object Request Brokers (ORBs) based on the CORBA specification [13].
Over the last few decades, software has slowly been decoupled. The introduc-
tion of the Client/Server structure removed the database from the fat client.
The thin-client decoupled the user interface from the business logic. Service-
oriented architectures were proposed to decouple the integration logic from the
business logic. Basically, services and service-oriented architectures are about de-
signing and building systems using heterogeneous network addressable software
components. A service-oriented architecture is thus an architecture made up
of components and interconnections that stresses interoperability and location

A Service Oriented Architecture for Integration of Fault Diagnostics 151

transparency. With the introduction of Web services and Grid services, there
has been a renewed interest in building service-oriented architectures for ‘virtual
organisations’ [4].

The technology of Web services is the most likely connection technology of
service-oriented architectures. Web services essentially use XML to create a ro-
bust connection. At the core of the Web services model is the notion of a service,
which is defined as a collection of operations that carry out some types of tasks.
Within the context of Web services, there are three components, namely service
providers, service requestors and service brokers. A service is deployed on the
Web by the service provider. The functions provided by a given Web service
are described using the Web Services Description Language (WSDL) [18] and
published on the Web. A service broker helps the service provider and service re-
quester find each other through a UDDI (Universal Description, Discovery, and
Integration) [17] based registry. A service requester uses the standard API to
ask the service broker about the services it needs and then uses SOAP (Simple
Object Access Protocol) [16] to invoke the remote service provider side applica-
tions.

The Grid is a name that was first coined in the mid-’90s to describe a vision for
a distributed computing infrastructure for advanced science projects. First prop-
erly explained by Ian Foster and Carl Kesselman [3], the Grid should enable ‘re-
source sharing and coordinated problem solving in dynamic, multi-institutional
virtual organisations’. With the first generation Grid involving ‘Metacomput-
ers’ and second generation Grid focused on middle ware and communication
protocols, now it is claimed that the third generation Grid is combining service-
oriented architecture concepts and Web services technologies to create Open
Grid Services Architecture (OGSA) [6], whereby a set of common interface spec-
ifications support the interoperability of discrete, independently developed ser-
vices. The Open Grid Services Infrastructure (OGSI) service specification is the
keystone in implementing this architecture, followed by the recent Web Service
Resource Framework (WSRF) [19], which is a set of six Web services specifi-
cations that try to meld Web service with Grid Computing by defining how to
model and manage state in a Web services context.

Defined by OGSA, a Grid service is basically a Web service, which is a set of
Internet-based distributed processes. Based on standards such as XML, SOAP,
WSDL and UDDI, the promise of Grid services is to enable a distributed envi-
ronment in which any number of applications, or application components, can
interoperate seamlessly among organisations in a platform-neutral, language-
neutral fashion on the Grid.

To support the complex system fault diagnostics, a methodology have been
proposed to integrate suites of modelling, estimation and analysis tools for fault
diagnosis on the Grid. The service-oriented architecture is adopted here to sup-
port this integration and the latest development on the Grid has been imple-
mented to meet the specifications of OGSA and WSRF.

By adopting this open SOA for the integrated fault diagnostics, the most
commonly used techniques for FDI, which include parameter estimation, state

152 X. Ren et al.

Fig. 1. Integrated fault diagnostics on the Grid

observer, parity relations, statistic approaches and symbolic approaches, can all
be developed individually as fault diagnostic services. As illustrated in Figure 1,
these services can be created and maintained by different institutions for differ-
ent fault diagnostic purposes and are all defined through a commonly accepted
description format, namely the Web Service Description Language (WSDL).
Registered with the Universal Description, Discovery, and Integration (UDDI)
registry, these fault diagnostic services can be discovered and organised in a flex-
ible way. The result is a versatile virtual FDI toolbox on the Grid. Users can
access this toolbox by using an Internet browser via a Grid portal, and they
can select different FDI schemes to fit their own unique requirements. When
an individual service is invoked, it can use the global or local Grid resources to
fulfil its commitment. This service can also invoke other Grid services if pos-
sible. At the low level, the physical Grid infrastructure provides the potential
high-performance computing power and large-scale data handling capabilities.
By adopting the OGSI specification, the proposed architecture is a Grid solu-
tion to integrated fault diagnostics, which allows different FDI applications to
share algorithms, data and computing resources as well as to access them across
multiple organisation in an efficient and secure way.

4 Implementation

The UK e-Science pilot project Distributed Aircraft Maintenance Environment
(DAME) is developing a distributed diagnostics and prognostics system for main-

A Service Oriented Architecture for Integration of Fault Diagnostics 153

tenance of civil aerospace engines. The techniques will generalise to other di-
agnostic domains such as medicine, transport and manufacturing. The DAME
system uses Grid technology to demonstrate how remote and diverse applica-
tions and services can be linked into a virtual diagnostic environment. Various
techniques are employed in the project, which include advanced pattern match-
ing to search very large data sets (Terabytes), modelling for fault diagnosis and
simulation for decision making, case based advice, workflow management and
collaboration environments [2].

As one effort carried out on the DAME project, the proposed service-oriented
architecture for integrated fault diagnostics has been implemented. A gas turbine
engine performance model was firstly provided as a Grid service to facilitate the
exploitation of further development and analysis of different model-based FDI
approaches. Figure 2 illustrates a running scenario of this Grid service through
a Web portal.

Figure 3 shows one basic usage of the engine simulation Grid service for fault
diagnosis. When an accurate system performance simulation is available on the
Grid, the experienced maintenance engineers can invoke this simulation against
the real monitored process data. The system that is being analysed is compared
against the simulation results. The differences between the current state of the
engine and the ideal model generate residuals. These residuals then need to be
intelligently analysed to form a decision about the current state of the engine.

Fig. 2. Engine Simulation Grid service

154 X. Ren et al.

Fig. 3. Simulation-based fault diagnosis

This can be used to track changes in engine parameters which may indicate
impending faults.

The advantages of providing an engine performance simulation as a Grid
service is that the engine simulation service is identified by a URI, whose pub-
lic interfaces and bindings are defined and described using XML. Authorised
users can perform the engine performance simulation through a Web browser
remotely without knowing details of the execution of the simulation. The simu-
lation service itself is distributed among a set of high-performance computers on
the Grid. Based on the Globus Toolkit 3 (GT3) [7], this engine simulation Grid
service can be invoked simultaneously in different ‘Virtual Organisations’ for dif-
ferent applications. The usage and management of the Grid resources are made
through the Globus middleware and are transparent to users. Through its pub-
lic interface, authorised developers can also invoke this service to develop their
own applications. The factory service can generate a bunch of engine simulation
instances for different client requirements at the same time and the security is
enhanced by implementing both the GT3 message level security and the SSL
two-way authentication.

The engine simulation Grid service has also been used in the event generation
and analysis for engine fault diagnosis and maintenance. As illustrated in Figure
4, there are two stages for this work. In the observation processing stage, raw
measurement of different engine performance variables and engine simulation re-
sults as inputs are analysed. A change detection method is used to characterise
the input time series. The goal is to recognise changes that are important in
the context of engine performance behaviour which correspond to engine faults.
This process has two aspects: segmenting data in a meaningful way and extract-

Fig. 4. Event generation and analysis

A Service Oriented Architecture for Integration of Fault Diagnostics 155

ing features that are useful about whether the engine is exhibiting normal or
abnormal behaviour. In the combination stage, two event sequences from both
the raw measurement and the engine simulation are compared, any discrepancy
will indicate possible fault.

The advantage of introducing a separate event history based on the engine
simulation is that a reference of health engine history is provided to assist the
fault diagnostic decision-making. The comparison of two discrete event histories
instead of the original binary time series data can help to overcome the model
uncertainty and unmodeled noise. As the result, the robustness of the fault
diagnosis is improved.

Another effort of the DAME project on the integration of fault diagnostics on
the Grid is the use of Case-Based Reasoning (CBR) [10] services to correlate and
integrate fault indicators from different aero engine input monitoring systems,
BITE reports, maintenance data and dialog with maintenance personnel to allow
troubleshooting of faults. As a qualitative fault diagnosis approach, case-based
reasoning is a problem-solving paradigm that resolves new problems by adapt-
ing the solutions used to solve problems of a similar nature experienced in the
past. A further advantage of this approach is that it allows consolidation of rule
knowledge and provides a reasoning engine that is capable of probabilistic-based
matching. With CBR technology, development can take place in an incremental
fashion facilitating rapid prototyping of an initial system. The development of
robust strategies for integration of multiple health information sources can be
achieved with reasoning algorithms of progressively increasing complexity.

Also deployed as Grid services on the Grid environment, the CBR services can
be invoked by other authorised Grid services or maintenance analyses to perform
the high-level fault diagnostics and decision-making, as illustrated in Figure
5. The advantage of deploying CBR as the Grid service is that maintenance
personnel can access a secured connection to the service via a web browser on

Fig. 5. Case-based reasoning Grid services

156 X. Ren et al.

any computer connected to the Internet. The maintenance personnel will then
have access to stores of accumulated diagnostic knowledge and maintenance
data as well as large computing resources to support the fault analysis and the
decision-making process. Other fault diagnostic services can be used to perform
the preliminary fault diagnosis and the results can be used to facilitate the CBR
analysis. As standard Grid services, the CBR services can be invoked to produce
useful outcomes that are profitable to other decision-making services as well.
In the future, the CBR services can be upgraded to accommodate a dynamic
learning process. Anomalous data (data containing unknown faults) may be
analysed in DAME to produce new fault cases that are dynamically appended
to the casebase, further increasing the knowledge of the system.

A typical use case which encompasses both the engine simulation and CBR
services in the fault analysis and maintenance process is described as follows.
Data downloaded from an aircraft is first analysed for novelties (known fault
occurrences). The existence of fault and the possible fault type can be checked
against the engine simulation. If a novelty exists, then further information is
extracted from the data and other available fault diagnostic services to form
a query within the CBR services. The result returned to the maintenance per-
sonnel consists of previous similar fault cases, known solutions to the problem,
as well as a confidence ranking for each case. The maintenance analyses and
domain experts can further take advantages of the integrated fault diagnostic
tools to confirm the fault diagnosis findings. For example, the domain experts
can substantiate a proposed fault analysis by injecting the similar fault into an
engine model and perform a simulation to check the uniformity.

By using the Grid technologies and the proposed serviced-oriented architec-
ture, more modelling, simulation, and decision-making services from different
providers or institutes can be shared, coordinated and integrated for fault diag-
nostics, prognostics and engine maintenance.

5 Concluding Remarks

In this paper the using of service-oriented architecture and Grid technologies
to support the distributed fault diagnosis of complex systems was discussed.
Different FDI schemes have been summarised and the importance of integrated
diagnostics has been emphasised. An open framework based on the OGSA has
been proposed and demonstrated on the DAME project to address the after-
market requirements of aero engine industry. The business benefits of this open,
flexible approach to integrated fault diagnostics are not only improved fault di-
agnosis performance, but also reusable service assembly, better maintainability,
better parallelism in development, higher availability and better scalability.

Acknowledgment

This work and the DAME project are supported by the UK EPSRC under
contract 2382.

A Service Oriented Architecture for Integration of Fault Diagnostics 157

References

1. J. Chen and R. J. Patton. Robust Model-based Fault Diagnosis for Dynamic Sys-
tems. Kluwer Academic Publishers, USA, 1999.

2. DAME. Distributed Aircraft Maintenance Environment project. URL: http://
www.cs.york.ac.uk/dame/, 2003.

3. I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

4. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the Grid:
An open services architecture for distributed systems integration. 2002.

5. J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker,
1998.

6. GGF. Global Grid Forum. URL: http://www.ggf.org, 2003.
7. Globus. Globus alliance. URL: http://www.globus.org, 2003.
8. R. Isermann. Supervison, fault-detection and fault diagnosis methods - an intro-

duction. Control Engineering Practice, 5(4):639–652, 1997.
9. R. Isermann and P. Balle. Trends in the application of model-based fault detection

and diagnosis of technical processes. Control Engineering Practice, 5(5):709–719,
1997.

10. J. Kolodner. Case-based Reasoning. Morgan Kaufmann, 1993.
11. Y. G. Li. Performance-analysis-based gas turbine diagnostics: A review. Proc.

Instn. Mech. Engrs, Part A, 216:363–377, 2002.
12. Microsoft. Distributed Component Object Model. URL: http://www.microsoft.

com/com/tech/DCOM.asp, 2003.
13. OMG. Object Management Group. URL: http://www.omg.org, 2003.
14. R. J. Patton. Robust model-based fault diagnosis: the state of the art. In IFAC

Symposium on Fault Detection, Supervision and Safety for Technical Processes,
pages 1–24, Espoo, Finland, 1994.

15. R. J. Patton, F. J. Uppal, and C. J. Lopez-Toribio. Soft computing approaches to
fault diagnosis for dynamic systems: A survey. In 4th IFAC Symposium on Fault
Detection supervision and Safety for Technical Processes, pages 198–211, Budapest,
Hungary, June 2000.

16. SOAP. The Simple Object Access Protocol. URL: http://www.w3.org/TR/
2000/NOTE-SOAP-20000508/, 2003.

17. UDDI. The Universal Description, Discovery and Integration protocol. URL:
http://www.uddi.org/, 2003.

18. WSDL. The Web Services Description Language. URL: http://www.w3.org/
TR/wsdl, 2003.

19. WSRF. The Web Services Resource Framework. URL:http://www.globus.org/
wsrf/, 2004.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 158 – 167, 2005.
© Springer-Verlag Berlin Heidelberg 2005

GAM: A Grid Awareness Model for Grid Environments

Pilar Herrero, María S. Pérez, and Víctor Robles

Facultad de Informática, Universidad Politécnica de Madrid,
Campus de Montegancedo S/N,

28.660 Boadilla del Monte, Madrid, Spain
{pherrero, mperez, vrobles}@fi.upm.es

Abstract. In this paper, we present a new extension and reinterpretation of one
of the most successful models of awareness in Computer Supported Coopera-
tive Work (CSCW), called the Spatial Model of Interaction (SMI), which man-
ages awareness in Collaborative Virtual Environments (CVEs) through a set of
key concepts. This work, carried out at the Universidad Politécnica de Madrid,
proposes a couple of special features: the management of the data information
from the user point of view and the co-ordinated sharing of computational re-
sources in a virtual organisation. The final awareness model allows users to be
aware of the data grid information in a grid computing infrastructure.

1 Introduction

There has been a surge of interest in grid computing, a way to enlist large numbers of
machines to work on multipart computational problems. There are excellent reasons
for this attention among scientists and engineers. Grid computing enables the use and
pooling of computer and data resources to solve complex data-intensive problems.
The technique is the latest development in an evolution that earlier brought forth such
advances as distributed computing, the Worldwide Web, and collaborative comput-
ing.

Grid computing harnesses a diverse array of machines and other resources to rap-
idly process and solve data-intensive problems. Academic and government research-
ers have used it for several years to solve large-scale problems, and the private sector
is increasingly adopting the technology to create innovative products and services,
reduce time to market, and enhance business processes.

Grids are networks that may include personal or desktop computers, computer
clusters, clusters of clusters, or special data sources. This definition reflects a desire to
take advantage of vastly powerful but relatively inexpensive networked resources. In
our work, we focus on the use of grids to manage large amounts of data in geographi-
cally distributed environments, getting what is usually known as Data Grid.

Grid computing is becoming a critical component of science, business, and indus-
try. Making grids easy to use could lead to advances in fields ranging from industrial
design to financial management. Grids could allow the analysis of large investment
portfolios in minutes instead of hours, significantly accelerate drug development, and
reduce design times and defects. With computing cycles plentiful and inexpensive,

 GAM: A Grid Awareness Model for Grid Environments 159

practical grid computing would open the door to new models for compute utilities, a
service similar to an electric utility in which a user buys computing time on-demand
from a provider.

In this paper we present the research work carried out at the Universidad Politec-
nica de Madrid with the aim of formalising a Grid Computing Model (GCM) to man-
age the scalability and the interaction on a Grid Computing infrastructure.

This formalisation is based on the extension and reinterpretation of an awareness
model – called the Spatial Model of Interaction (SMI) [1] - and the concepts that this
SMI defines as its key concepts.

In this paper we give an overview to the theoretical principles of the SMI and its
key concepts before introducing our own interpretation of them. The paper continues
with brief description of our preliminary implementations, and finalise with a brief
summary of our ongoing and future work.

2 The Spatial Model of Interaction (SMI)

The Spatial Model of Interaction (SMI), defined for application to any Computer
Supported Cooperative Work (CSCW) system where a spatial metric can be identi-
fied, has been driven by a number of objectives [1]:

 Scalability: It is based on the concept of aura. Each object has an aura for
each medium in which it can interact, because the aura defines the volume of
space within which this interaction is possible. The use of aura facilitates scal-
ing to many users by limiting the number of object interactions that must be
considered. This number will be governed by the extent of the object auras
and by the population density of the space.

 Interactions: The SMI assumes a space populated by potentially communicat-
ing objects. These objects may represent anything: human users or data in a
database, for example. The space itself may have any form, for example, a
three-dimensional Cartesian space, an abstract higher-dimensional space or a
graph. The SMI provides a framework for these objects to manage their inter-
action, and communication between every pair of objects. A key component
of this management of interaction is the use of the space itself. Thus by con-
trolling their geometrical information the objects are able to modify their in-
teraction and communication [7,8,9].

The model itself defines five linked concepts: medium, focus, nimbus, aura and
awareness (see Fig. 1 and Fig. 2). These are extended by the additional concepts of
adapters and boundaries.

 Medium: A prerequisite for useful communication is that two objects have a
compatible medium in which both objects can communicate. This medium
might include audio, video, graphics and text.

 Aura: In 1992, Fahlén and Bowers defined aura as the sub-space which effec-
tively bounds the presence of an object within a given medium and which acts
as an enabler of potential interaction [4]. Once aura has been used to deter-
mine the potential for object interactions (see Fig. 1), the objects themselves

160 P. Herrero, M. Pérez, and V. Robles

are subsequently responsible for controlling these interactions. “When two
auras collide, interaction between the objects in the medium becomes a possi-
bility”.

Aura
Interaction

Fig. 1. Collision of two objects’ auras

 Focus: In each particular medium, it is possible to delimit the observing ob-
ject's interest. This idea was introduced by S. Benford in 1993 as "The more
an object is within your focus the more aware you are of it”, and it was called
Focus.

 Nimbus: In the same way, it is possible to represent the observed object's pro-
jection in a particular medium. This area is called Nimbus: "The more an ob-
ject is within your nimbus the more aware it is of you".

Observed

Observer

Nimbus

Focus

Fig. 2. Key concepts in The Spatial Model of Interaction

 Awareness: It is the main concept involved in controlling interaction between
objects. It quantifies the degree, nature or quality of interaction between two
objects. One object’s awareness of another object quantifies the subjective
importance or relevance of that object. The awareness relationship between
every pair of objects is achieved on the basis of quantifiable levels of aware-
ness between them and it is unidirectional and specific to each medium.

Therefore, awareness between objects in a given medium is manipulated via Focus
and Nimbus, requiring a negotiation process. Considering, for example, A's awareness
of B, the negotiation process combines the observer's (A's) focus and the observed's

 GAM: A Grid Awareness Model for Grid Environments 161

(B's) nimbus. In the words of Benford and Fahlén: "The level of awareness that object
A has of object B in medium M is some function of A's focus on B in M and B's nim-
bus on A in M".

For a simple discrete model of focus and nimbus, there are tree possible classifica-
tions of awareness values when two objects are negotiating unidirectional awareness
[10]:

 Full awareness: The awareness that object A has of object B in a medium M
is “full” when object B is inside A’s focus and object A is inside B’s nimbus.

 Peripheral awareness: The awareness that object A has of object B in a me-
dium M is “peripheral” when object B is outside A’s focus but object A is in-
side B’s nimbus, or object B is inside A’s focus but object A is outside B’s
nimbus.

 No awareness: An object A has no awareness of object B in a medium M
when object B is outside A’s focus and object A is outside B’s nimbus.

In the Spatial Model of Interaction, an object can control its awareness in different
ways [1] by modifying its own auras, foci and nimbi:

 Implicitly: By moving and changing direction within the space and hence its
auras, foci and nimbi.

 Explicitly: By directly modifying the parameters which define auras, foci and
nimbi.

Some extensions of the Spatial Model of Interaction are Adapters, from Benford
and Fahlén [4], and Boundaries, from Bowers [3]. However, in this paper we are not
going to take into account adapters, leaving this concept and its effects for future
work.

Boundaries also are a way of structuring space and influencing awareness [3]. In
this way, boundaries "divide space into different areas and regions and provide
mechanisms for marking territory, controlling movement, and influencing the interac-
tional properties of space" [10]. It is possible to identify several kinds of boundaries:

 Obstructive: The boundary blocks the property in question (aura, focus,
nimbus)

 Conditionally obstructive: The obstruction can be removed when some condi-
tion is obeyed

 Transforming: The boundary alters the property in some way
 Non-obstructive: The boundary has no effect on the property

In this section we have provided readers with an overview of the SMI and its key
concepts as they were introduced in the original model. In the next section we will
describe in detail how we have reinterpreted and extended this awareness model in the
context of a grid computing infrastructure.

The extension and reinterpretation of this awareness model has been made in two
different phases. The first one, became a prototype, called MADEW, which was in
charge of establishing the operability of the key awareness concepts as they were
extended and reinterpreted for our purposes. The second one has to involve the de-
sign, implementation and operation of the grid infrastructure and constitute the main
objective of this paper.

162 P. Herrero, M. Pérez, and V. Robles

3 The SMI’s Key Concepts in a Grid Environment

One of the major goals of grid computing is to provide efficient access to data.
Nowadays, there is a huge number of data-intensive applications, e.g. data mining
systems extracting knowledge from large volumes of data. Data-intensive applications
have been used in several domains, such as physics, climate modelling, biology or
visualisation.

Grids provide access to distributed computing and data resources, allowing data-
intensive applications to improve significantly data access, management and analysis.
Grid systems responsible for tackling and managing large amounts of data in geo-
graphically distributed environments are usually named Data Grid.

This research line presented in this paper started by a simple, abstract and prelimi-
nary interpretation of the SMI key concepts in the context of an asynchronous col-
laboration [11,12,13] and nowadays proposes an awareness infrastructure for grid
computing.

This awareness infrastructure is based on reinterpreting some of the SMI key con-
cepts into grid environments as follows:

Focus: It represents an observing data's interest. It can be interpreted as the subset of
the space on which the user has focused his attention with the aim of looking for spe-
cific information. It can relate both to content and to other users. Regarding content, it
can be computed by the type of information you are looking for in a geographically
distributed environment. Regarding other users, it can be computed by collecting
information about those users that, having areas of common interest and/or having
had effective past interactions, you maybe interested in.

Nimbus: It represents an observed data's projection. It can be interpreted as the subset
of the space in which information is geographically accesible. It also can relate both
to content and to other users. Regarding content, it can be computed by the set of
owned resources that the user is interested in sharing with others. Regarding other
users, it can be computed by collecting information about those users could or should
be informed about the shared information.

Awareness: This concept will quantify the degree, nature or quality of asynchronous
interaction between a user and the distributed data resources. The interaction will
manage how systems extract knowledge from large volumen of data, managing the
efficiency to access to data. The more the interaction is managed the better the infor-
mation is distributed.

Aura: This concept will be used to determine the potential for user interactions. The
use of aura to makes easy scale to many users by limiting the interactions that must be
considered. This concept will allow data-intensive applications to improve signifi-
cantly data access and management.

Boundaries: They are used to divide the space into different areas and regions and
provide mechanisms for marking territory, controlling movement and for influencing
the interaction properties of the space.

 GAM: A Grid Awareness Model for Grid Environments 163

We also propose an extension of the SMI to introduce some new concepts in our
awareness infrastructure as a way of improving the data access and analysis. In this
way, in this paper we propose to introduce the following concepts:

Sensorial Limitation: This concept will introduce new restrictions on the information
to be shared in the distributed environment. Users in a grid environment could be
aware of visual information, auditory information or both of them.

Data Limitation: Once the sensorial limitation has been established, user can be au-
thorized to get all kind of visual (or auditory) information –such as images and vid-
eos- from the environment or just a part of it –such as text and images or just text.

Internal Filters: Focus and nimbus could be restricted by the user's internal state and
desires. For instance, focus could be restricted through potential collaborator's profiles
and through content filters. We will only be aware of those data that are within our
focus and fall into our defined profiles. Social trends, users directions and the history
of previous interactions - and their effects on our mood or internal state - can also
restrict our focus or nimbus and therefore the data awareness. Thus, a successful in-
teraction will increase our level of attention to users or contents that fall into a similar
profile.

In this section we have introduced our proposal for reinterpreting and extending
awareness into the context of grid environments. In the next section we will describe
the first implementation we have made of this approach.

4 Implementing GAM

The first implementation of our interpretation was envisioned for educational pur-
poses in an international company with a very strong alliance programme and a long
list of partners along the world. The major goal of this application was to gather to
communicate and collaborate with colleagues from other institutions world-wide on
the subject, applying high-speed computational science and allowing:

Co-ordination and collaboration in or between physically dispersed and/or virtual
organisations.

The exploitation of computational resources, data, software, storage and other re-
sources available in the whole of the company.

Controlled access by resource providers, which defines who can share, what is
shared, and which conditions allow sharing in a distributed heterogeneous computing
and data storage.

The resulting application would facilitate resource and data sharing, transfer and
dynamic replication of data, and synchronisation of databases; and the interoperability
of this inter-networked environment transforms the grid of servers into a single, large
virtual computer for the end user.

Nowadays, the Grid Computing community is changing its directions towards ser-
vices model. The new Open Grid Services Architecture (OGSA) [5], defined by the
Global Grid Forum (GGF) [6], shows an abstract view of the new trend of Grid envi-
ronments. OGSA provides support by the creation, maintenance and lifecycle of ser-
vices offered by the different Virtual Organizations (VOs) - a set of persons, users,
individuals or institutions that share the same access.

164 P. Herrero, M. Pérez, and V. Robles

The new trend is trying to fuse Web Services and Grid Services defined by the
OGSA in a single development line. The GGF and the organization in charge of Web
Services, World Wide Web Consortium (W3C), are making great efforts to become
true this union.

Having in mind these two stages of this new tendency, our plan consisted of im-
plementing the application in two phases:

Phase I establishes the operability of the key awareness concepts extended and re-
interpreted in the previous section, having been implemented in a prototype system,
called MADEW (Awareness Models developed in Web Environments) [11,12,13]

Phase II involves design, implementation and operation of the awareness infra-
structure on a grid infrastructure.

Besides the typical set of operations associated to a training course and to the
management of users and data in a software application –such as introduce, remove or
modify data and user’s details -, MADEW controls employee access to some specific
areas, the circumstances in which employees could access this information (visual or
auditory) and the kind of information they could pick up from the course.

The hierarchy of permissions was established by the enterprise depending on the
status of the employee. To make it possible, each and every resource in the course
(not just visual but also audial) must be registered (Fig. 3) and the person in charge of
the course has to associate some privileges to each and very employee in the enter-
prise given the application’s data limitations (Fig. 4, Fig. 5). For example, those

Fig. 3. Registering new resources in MADEW

 GAM: A Grid Awareness Model for Grid Environments 165

Fig. 4. Access Management in MADEW

Fig. 5. Data Limitations

employees with a high position in the company would have access to all the course
information (including text, images, videos and sound files), beginners could only
access to textual information, and images but perhaps not to audio files.

If the information is available a user and he is interested in it, there will be a full
awareness of interaction. However, if the user tries to access a specific part of the
course where there is a boundary, the application will threw an error message (Fig. 6)
advertising to the user that he (or she) is trying to access a restrictive part of the
course material for which he (or she) has not permission. If the user could justify the

Fig. 6. Denied message in MADEW

166 P. Herrero, M. Pérez, and V. Robles

necessity of accessing that part of the course or that particular resource, the course
manager could modify his or her privileges.

Currently we are working on how to make a grid service with the starting point
from MADEW’s implementation. MADEW has been implemented as both a web
application and a web service. The relationship between web and grid services makes
easier the adaptation of this application to a grid environment.

5 Conclusions, Ongoing and Future Work

In this paper, we present a new extension and reinterpretation of one of the most suc-
cessful models of awareness in Computer Supported Cooperative Work (CSCW),
called the Spatial Model of Interaction (SMI), which manage awareness in Collabora-
tive Virtual Environments (CVEs) through a set of key concepts [1,2].

This awareness infrastructure extends the key concepts of the SMI introducing
some new factors– such as Sensorial Limitation, Data Limitation or Internal Filters -
as well as it makes a reinterpretation with the aim of introducing them as the key
concepts of this awareness model.

Our awareness infrastructure emphasises on two important items: the management
of the data information and the sharing of computational resources in a virtual organi-
sation, both of them from the user point of view. The final awareness model to allow
users to be aware of the data grid information in a grid computing infrastructure.

The awareness model implementation was planed in two different phases. The
first one, which was implemented in a prototype system called MADEW, was in
charge of establishing the operability of the key awareness concepts extended and
reinterpreted in the model to be used for training purposes. The second one involves
design, implementation and operation of the grid infrastructure and constitute our
ongoing work.

Acknowledgements

The work presented in this paper has been supported by the Communication Research
Group (CRG), led by Steve Benford and Chris Greenhalgh at the School of Computer
Science and Information Technology in the University of Nottingham, in UK.

References

[1] Benford S.D., and Fahlén L.E. A Spatial Model of Interaction in Large Virtual Environ-
ments. Published in Proceedings of the Third European Conference on Computer Sup-
ported Cooperative Work (ECSCW'93). Milano. Italy. Kluwer Academic Publishers, pp.
109-124, 1993.

[2] Benford S. and Mariani J Requirements and Metaphors of Shared Interaction. COMIC
Esprit Basic Research Project 6225. D4.1, 1993.

[3] Bowers J. Modelling Awareness and Interaction in Virtual Spaces. Supplement to Pro-
ceedings of the 5th MultiG Workshop. Stockholm-Kista, pp. S9-S24, 1993.

 GAM: A Grid Awareness Model for Grid Environments 167

[4] Fahlén, L. E. and Brown, C.G., The Use of a 3D Aura Metaphor for Compter Based Con-
ferencing and Teleworking, Published in Proceedings of the 4th Multi-G Workshop,
Stockholm-Kista, pp. 69-74, 1992.

[5] Foster I., Kesselman C., Nick J., Tuecke S. The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration; Open Grid Service Infrastruc-
ture WG, Global Grid Forum, June 22, 2002.

[6] Global Grid Forum http://www.ggf.org
[7] Greenhalgh C. An experimental implementation of the spatial model. In Pehrson B. and

Skarback E. (Eds.) Published in Proceedings of the 6th ERCIM workshops. Stockholm,
pp.53-71, June 1994.

[8] Greenhalgh, C. M., and Benford, S. D. MASSIVE: A Virtual Reality System for Tele-
conferencing, ACM Transactions on Computer Human Interfaces (TOCHI), 2 (3), pp.
239-261, ISSN 1073-0516, ACM Press, September 1995

[9] Greenhalgh, C. Dynamic, embodied multicast groups in MASSIVE-2, Technical Report
NOTTCS-TR-96-8, Department of Computer Science, University of Nottingham, UK,
1996.

[10] Greenhalgh, C., Large Scale Collaborative Virtual Environments, Doctoral Thesis. Uni-
versity of Nottingham. October 1997.

[11] Herrero P., De Antonio A., A Formal Awareness Model for 3D Web-Based Collaborative
Environments. Published in Proceedings of the Workshop on Awareness and the www.
ACM 2000 Conference on Computer Supported Cooperative Work (CSCW 2000).
Philadelphia, Pennsylvania, USA , 2000.

[12] Herrero P. A Human-Like Perceptual Model for Intelligent Virtual Agents PhD Thesis.
Universidad Politécnica de Madrid, June 2003.

[13] Herrero P., De Antonio A., MADEW: Modelling a Constraint Awareness Model to Web-
Based Learning Environments. Published in Proceedings of the International Conference
on Computational Science (ICCS 2004). Krakow, Poland, June 2004.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 168 – 175, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Grid Accounting Service Infrastructure
for Service-Oriented Grid Computing Systems

Jemal H. Abawajy

Deakin University,
School of Information Technology,
Geelong, Victoria 3217, Australia
jemal@deakin.edu.au

Abstract. In this paper, we propose an architecture of accounting and payment
services for service-oriented grid computing systems. The proposed accounting
and payment services provide the mechanisms for service providers to be paid
for authorized use of their resources. It supports the recording of usage data, se-
cure storage of that data, analysis of that data for purposes of billing and so
forth. It allows a variety of payment methods, it is scalable, secure, convenient,
and reduce the overall cost of payment processing while taking into account re-
quirements of Grid computing systems.

1 Introduction

Grid computing [4] is a distributed computing platform that integrates resources
across multiple organizations and administrative domains. In a Grid environment,
resources belonging to different organizations work in a shared, coordinated and col-
laborative manner to solve large scale scientific and engineering problems. Recently,
Grid computing is evolving towards a service-oriented architecture [4]. As a result,
service-oriented grid computing is attracting increasing attention from the grid com-
puting research community.

Service-oriented grid computing nicely deals with the challenges in a dynamic,
heterogeneous, and geographical Grid environment and provides a universal resolu-
tion for Grid computing system architecture [1, 4, 8]. Also, it provides efficient
mechanism whereby incentives are offered for resource owners to contribute re-
sources to the grid system while at the same time encourage users to optimally utilize
grid resources. Moreover, users will be able to buy exactly the amount of service they
need, without concerns about buying, housing and maintaining computers, and with-
out the expense of idle equipment. The Grid audit allows clients to evaluate applica-
tion performance and adapt to changes in resource availability and cost dynamically
[2]. Resource providers can analyze the demand for their resources and adjust prices
accordingly. In order to conduct the audit there is a need for a global Grid accounting
infrastructure. Most resource management systems such as cluster systems and oper-
ating systems log accounting information against local system accounts. The re-
sources they account for, such as CPU time, main memory, secondary storage and

 Grid Accounting Service Infrastructure for Service-Oriented Grid Computing Systems 169

network consumption, vary from one system to another. Also the internal format of
the accounting data is different between the systems.

An example of a service-oriented grid computing is the Open Grid Services Archi-
tecture (OGSA) [4], which is basically the fusion of the Globus Toolkit and the Web
Services technologies that meets the demands of an increasingly complex and distrib-
uted computing infrastructure: by providing a set of interfaces from which all Grid
services are implemented, the OGSA allows for consistent resource access across
multiple heterogeneous platforms with local or remote location transparency; it also
allows the composition of services to form more sophisticated services regardless of
how the services are implemented, and supports integration with various underlying
native computing platforms facilities.

Unfortunately, there are several obstacles, most notably security and accounting, to
the widespread adoption of the service-oriented Grid computing. Accounting is the
process of keeping track of a user's activity while accessing the network resources,
including the amount of time spent in the network, the services accessed while there
and the amount of data transferred during the session. Accounting data is used for
trend analysis, capacity planning, billing, auditing and cost allocation. The accounting
process provides valuable security information for incidence response and other secu-
rity processes. Although the significance of computational accounting has been
widely recognized recently and Global Grid Forum Accounting Working Group has
been established to address a component of the Grid accounting problem [9], account-
ing services has until recently been a sparsely-addressed problem, particularly in
practice.

Our goal in this paper is to close this gab by building secure grid accounting ser-
vice infrastructure. our principal subject of study, is how users can pay for computing
services received; we decided to address this problem through the use of economic
transactions between producers (the resources) and consumers (the users), within the
context of an economic model. In this model, users pay in order to execute their job
on the resources and the owner of the resources earns credits by executing the user
jobs.

The rest of the paper is organized as follows: Section 2 presents related work and
discusses various technical challenges that have to be addressed in order to realize
service-oriented grid systems. In Section 3, we describe the proposed system architec-
ture along its main components. The conclusion and future directions are presented in
Section 4.

2 Related Work

Service-oriented grid computing is the computing paradigm that utilizes services as
fundamental elements for developing applications/solutions. A service, in the context
of service-oriented grid computing, is defined as a resource (e.g., compute, communi-
cation and storage) that is provided by resource owners for use by any interested par-
ties for a fee. In the service-oriented Grid system of interest, we have a set of

sites, { }sS,,S S 1= , each site is owned and managed by a single grid service pro-

vider. In general, there are three key entities involved in service-oriented Grid sys-

170 J.H. Abawajy

tems: (1) Grid service users (GSC); (2) Grid service provider (GSP); and (3) Grid
bank service (GBS).

The GBS provide tools for its clients to withdraw and deposit funds in their ac-
count. Resource owners (GSP) are allowed to solicit an open market price in a way
that achieves maximum profit and resource consumers (GSC) are allowed to select
resources that meet their special need and quality of service. Grid service users can be
individuals, groups or organizations with the need to access large resources in order to
solve the most challenging computational problems and willing to pay for resource
utilization using an electronic payment system.

Some of the challenges to be addressed when designing and deploying service-
oriented systems include: (1) provide GSC with a secure way of paying for the service
over network; (2) a GSP must be protected from dishonest GSC; (3) a GSC should be
able to rightfully repudiate bogus transactions; (4) grid sites must be able to exchange
basic accounting and usage data in a common format; and (5) a grid bank service
(GBS) should generally be representative of real-world banking system in that it
should be scalable, secure, convenient; and provide all the operations supported by
traditional banking systems. Hence, in order to realize the full potential of service-
oriented grid systems, new services such as service pricing, accounting, charging and
payment mechanisms are required in addition to the issues (e.g., information direc-
tory, resource allocation, execution management, and scheduling) that have already
been addressed by existing grid systems [8]. These new middleware services form the
backbone of any service-oriented grid system.

There are several obstacles, most notably security and accounting, to the wide-
spread adoption of the service-oriented Grid computing. As noted in [8], the problem
of grid accounting will be of increasing importance to high-performance service pro-
viders. Moreover, the significance of grid accounting service has been widely recog-
nized recently and Global Grid Forum Accounting Working Group has been estab-
lished to research issues such as a Resource Usage Service [9] for global Grid ac-
counting. However, satisfactory solutions to this problem in the context of grid
computing do not yet exit [8]. Existing Grid accounting systems present a solution
only in the context of local resource management systems. Although several
initiatives are engaged in the development of Grid technologies, Grid accounting and
payment issues are yet to be addressed [8]. To overcome this limitation, we propose
an infrastructure that provides services for authorization, payment, accounting, and
audit. It is a secure authorization, payment, accounting and audit system leveraging
the Globus Toolkit technologies.

The idea of applying economics to resource management in distributed systems has
been explored in a number of systems and architectures [2]. Unfortunately, many of
them have mentioned but do not address the problem of accounting for resource con-
sumption and conducting an audit to determine which allocations have been utilized.
Grid Economic Services Architecture (GESA) [1] concentrates on providing the ena-
bling infrastructure by defining additional service data and ports (interfaces) compli-
ant with the Open Grid Services Architecture. An implementation of GASA, called
the GridBank is discussed in [1]. The GRid Architecture for Computational Economy
[] concentrates on pricing mechanisms independent of middleware implementation. A
third-party trusted Grid banking service and a resource usage service are considered
as separate outside services and are not defined. Service Data Elements, which de-

 Grid Accounting Service Infrastructure for Service-Oriented Grid Computing Systems 171

scribe potential chargeable resource items, provided by the ChargableGridService
abstraction are categorised but are not defined syntactically. The work is in progress
and promises to improve future releases of the Globus Toolkit by providing integrated
accounting services.

The area of computational accounting has not been formally researched in tradi-
tional computing environments. Such environments usually span only one organiza-
tion or administrative domain and resource usage is recorded against local system
accounts. Such accounts are local to the site (administrative domain) and all account-
ing information recorded against the accounts is in proprietary format and cannot be
shared with other sites. The GGF Accounting Working Group has been formed as part
of the Global Grid Forum to overcome billing and authorization limitations present in
distributed Grid systems. The goal of the group is to collaborate research and devel-
opment in the accounting field of Grid computing such as research a Resource Usage
Service [9] for global Grid accounting.

3 Service-Oriented Grid Computing Architecture

The service-oriented Grid system architecture being proposed in this paper is de-
signed to offer low-level service that co-exits with existing Grid infrastructures [3, 4,
6, 7]. Access to the service-oriented Grid resources are controlled by service provid-
ers and software libraries that allow service buyers to negotiate as shown in Figure 1.
Note that for the sake of brevity, we deliberately left out some middleware technolo-
gies (e.g., information directory, resource allocation, execution management, and
scheduling) from Figure 1 as these technologies are already provided by a number of
Grid systems [2, 4] and remain the same in our service-oriented Grid structure as
well. As in [1], the proposed system uses SOAP (e.g., over Globus toolkit’s sockets),
which are optimized for security. A user proxy is a certificate signed by the user,
which is later used to repeatedly authenticate the user to resources [9]. This avoids the
problem of making the user enter password for each resource to be used.

3.1 Grid Service Providers

Grid Service Provider (GSP) contributes its resources to the Grid and charge for their
usage. The components of the GSP can be divided into three main groups: Negotia-
tors, Verifiers and Billers that are responsibilities for direct accounting system for
recording resource consumption and billing the user according to the agreed pricing
policy.

The Verify subsystem provides three essential services necessary for GSP: (1) au-
thorization verification; (2) conflict resolution; and (3) contract verification. The
authorization verification service establishes securely and accurately the identity and
credentials of each user for which GSP accepted to perform some services. The con-
tract verification is responsible for making sure that there are enough funds before
actually undertaking the request for a user. In case there is a disagreement on given
transactions, the GSPs should be able to prove that the service took place. The verify
subsystem is called upon in this situation which uses the resource utilization informa-
tion in a database about each completed services.

172 J.H. Abawajy

Fig. 1. An overview of the generic service-oriented Grid architecture

The Grid Resource Monitor (GRM) and the Grid Service Billing (GSB) subsystems
are responsible for collecting the raw usage information, aggregate them into a record
usage format proposed in [13] and enable assigning of the charges and value to these
usage records. The GRM collects statistics on the utilization of various resources
types (e.g., CPU time, storage, connection set-up cost, etc.) for each user and store
them in a file with read and append permissions only. This will address security of
usage collection as it is related to fraud of falsifying usage records, which we believe
that it is one of the most important aspects of the service-oriented Grid system. The
GRM is user configurable with respect to how often as well as what resources to
monitor. In addition, data collection is performed, as much as possible, in a non-
invasive manner.

A cumulative usage of each resource type along the identity of the user is stored in
a database where the GSB will generate invoices from. The GSP will keep the informa-
tion for a specific period after which time it is archived or deleted. Invoices can be
produced on-demand as well as in a batch at specific period (e.g., monthly). The GSB
supports different types of usage calculations (e.g., ALL-RESOURCES, CPU-ONLY,
STORAGE-ONLY, and MEM+CPU). This is accomplished by making the usage calcu-
lation user configurable such that the GSP can tune resources to meet specific needs.

Grid Bank

Database

Grid BankGrid Bank

Database Database Grid Bank

Database

Grid BankGrid Bank

Database Database

Grid Bank

Database

Grid BankGrid Bank

Database Database

Grid Bank

Database

Grid BankGrid Bank

Database Database

D
is
co
ve
ry

B
an
ki
ng

In
vo
ic
e

V
er
ifi
er

Ba
nk
in
g

Tr
ad
er

Br
oc
ke
r

databaseR2 R3

RN

R1

R4

R5

R6

2
databasedatabaseR2 R3

RN

R1

R4

R5

R6

2

 Grid Accounting Service Infrastructure for Service-Oriented Grid Computing Systems 173

The trader, e-pay and price subsystems are collectively responsible for negotiation
with users or their agents with the objectives of maximizing GSP profit. The trader
advertises the available services in business directory, provide rates and quotes for
potential users and also responsible for the negotiation of how to handle services that
run over the purchased time. Note that queries with respect to service rate quotes are
not binding and have time-to-live. The system can be configured to send acknowl-
edgement/rejection message to requesting entity if need be. Three possible scenarios
supported by the trader to handle overrun cases are: suspend and notify, kill or allow
the service to complete.

The pricing subsystem allows GSPs to competitively set the price using pricing
strategies that have been proposed in the literature [see 4 and reference thereafter].
GSP may keep track of payment history for each user to minimize loses of revenue
due to unpaid service. GSP can accept one or some or all payment methods described
in previous section. GSPs can also tailor the payment methods accepted through the e-
Pay subsystem to the GSCs trust-level or credit rating. For instance, new clients will
start with prepaid method while established clients can have any methods of pay-
ments. This flexibility will be attractive to both GSP and GSC in that the GSP can
minimize revenue losses while GSCs can build their ratings slowly with the GSP.

3.2 Grid Service Customer

Grid service users (GSC) interact with the system by defining their requirements
through the grid service broker. An example of user requirement is “Solve this prob-
lem within 30 minutes (i.e., deadline), to be paid in rubies (i.e., currency to be used)
after the service is rendered (i.e., payment methods)”. If a suitable GSP is available,
the broker (described in the next section) will send the particulars of the chosen GSPs.

Costs of resource usage and service level agreements are negotiated between the
service providers and service users before access to the resource is granted. Specifi-
cally, ff GSC decides to use the service provider suggested by the broker, it will pro-
vide permission to GSP to verify the availability of enough funds and any other nec-
essary information needed before beginning the required service.

3.3 Grid Service Broker

The grid service broker (GSB) provides the means to negotiate and acquire resources
that meet the GSCs requirements. In general, GSB has two main components: nego-
tiator and service-level agreement enforcer. Every GSC supplies sufficient resource
requirement information to allow the negotiator to determine the cost of the resource
that will be needed by GSC. It then attempts to maximize user utility by simply
choosing the GSPs through the cost-benefit analysis.

The negotiator communicates with the GSPs trader or grid market directory (GMD)
and then selects the appropriate GSP that meets the GSC requirements. Note that in
service-oriented Grid environment, how each GSC will pay for the service must also be
considered at the time of resource selection. For instance, if a given GSP do not offer
services in the user-preferred currencies (e.g., rubies) and intended user payment meth-
ods (e.g., pay-after-usage), then the recruitment of this particular GSP despite of its

174 J.H. Abawajy

attractive price cannot be considered. Therefore, we extended the basic negotiator by
including information needed to select an appropriate GSP for the GSCs.

The negotiation between the GSB and GSP will result in a binding agreement be-
tween the two parties in that the GSP will deliver end-to-end quality of services de-
pending on user requirements whereas the GSB agrees to pay the agreed upon price
promptly. It is the responsibility of the service-level agreement enforcer to ensure that
GSC get their moneys worth. In this paper, we assume that both parties don’t renege
on their contractual obligations and the case where this is not true will be addressed in
the future.

3.4 Grid Bank Service

A grid bank service (GBS) is a multi-party protocol between a number of grid service

users, { }n1 u,,u U = , and a number of banks, { }n1 b,,b B = , in the system.

It is a virtual financial institution that establishes an account for all participants (i.e.,
GSP, GSC and GBS) and guarantees payment for authorized transactions in accor-
dance with electronic payment (e-payment) method regulations and local legislation.

Digital Note (DN) is used as a piece of data that represents monetary value within
the system. Each bank generates its own DN with value, serial number, bank id, from,
to, and due dates (i.e., valid and expiry dates) fields. Every client of a bank will be
assigned a set of DN at the time of opening account or on-demand from the client.
Each DN is digitally signed by the bank using public key cryptography to make them
valid currency. Also, a unique serial number is assigned to each DN by the bank.

In addition to providing exchange rate functionality to its clients, the GBS provides
a number of different types of accounts including: (1) project-level account (PLA);
(2) individual-level account (ILA); and (2) group-level account (GLA). The PLA
accounts are appropriate for many users working on the same or related projects. In
PLA, resource usage is charged against the project. Group-level accounts are appro-
priate for organizations such as institutions that have many projects going simultane-
ously and the cost of these projects is charged on the group-level account. Individual
accounts are appropriate for grant-level projects or small organizations.

Moreover, each bank provides tools for its clients to withdraw and deposit funds,
account enquiry and inter-bank clearing. Only a client with appropriate credentials
can use the account enquiry, withdraw and deposit tools. Clients use the same user
proxy/component to access their bank as they use to access other resources on the s-
Grid. Inter-bank clearing (IBC) handles issues involving fund transfers and request
for information between different banks. So, IBC operation is restricted to by differ-
ent banks.

4 Conclusions and Future Directions

In this paper, we proposed a scalable, secure and easy to use and implement service-
oriented grid computing architecture. We described an important component of such
system which is the electronic payment system along many other components neces-
sary for realizing the service-oriented Grid systems. All components in the proposed
architecture are user configurable as such can be integrated into the existing systems.

 Grid Accounting Service Infrastructure for Service-Oriented Grid Computing Systems 175

In addition, the proposed system protects both users and service providers against
theft and forgery. Moreover, it provides the grid service providers with tools that help
them maximize the profit (e.g., tools for expressing their pricing policies and mini-
mize bogus transactions) and recording service use and accounting. We are currently
exploring a potentially common usage collection framework with web services.

Acknowledgements. The help Maliha Omar is very much appreciated. Without her
help, this paper would not have been completed on time.

References

1. Barmouta A., Buyya R.: GridBank: A Grid Accounting Services Architecture (GASA) for
Distributed Systems Sharing and Integration. IPDPS (2003) 245

2. Elmroth E., Gardfjäll P.: An OGSA-based Bank Service for Grid Accounting Systems,
PARA'04 Workshop in State-of-the-Art in Scientific Computing, 2004.

3. Buyya R., Abramson D., Giddy J.: A Case for Economy Grid Architecture for Service
Oriented Grid Computing. HCW’98, (1998) 4-18.

4. Foster I., C. Kesselman, Nick J., Tuecke S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, 2002.

5. Foster I., C. Kesselman, Nick J., Tsudik G., Tuecke S.: Security Architecture for Compu-
tational Grids. In Proc. 5th ACM Conference on Computer and Communications Security
Conference (1998). 83-92.

6. Medvinsky G., Neuman B.: NetCash: A Design for Practical Electronic Currency on the
Internet. ACM Conference on Computer and Communications Security (1993) 102-106.

7. Novotny J., Tuecke S., Welch V.: An Online Credential Repository for the Grid:
MyProxy. In Proceedings of the Tenth International Symposium on High Performance
Distributed Computing (HPDC-10), IEEE Press, 2001.

8. Abawajy J.: Grid Accounting and Payment Architecture, Proceedings of IASTED Interna-
tional Conference on Parallel and Distributed Computing and Networks, (2004) 82 - 88.

9. Resource Usage Service Working Group, Globus Grid Forum. http://www.doc.ic.ac.uk/
~sjn5/GGF/rus-wg.html

10. Grid Economic Services Architecture, Working Group, http://www.doc.ic.ac.uk/~sjn5/
GGF/gesa-wg.html.

11. Foster I., Kesselman C., Nick J., Tuecke S.: Grid Services for Distributed System Integra-
tion. Computer, 35(6), 2002.

12. Basney J., Chetan S., Qin F., Song S., Tu X., Humphrey M.: An OGSI CredentialManager
Service. UK Workshop on Grid Security Practice, Oxford, July 2004.

Mercatus: A Toolkit for the Simulation of
Market-Based Resource Allocation Protocols

in Grids

Daniel Grosu and Umesh Kant

Department of Computer Science,
Wayne State University, 5143 Cass Avenue,

Detroit, MI 48202, USA
dgrosu@cs.wayne.edu
ap5651@wayne.edu

Abstract. Grid technologies enable the sharing and coordinated use
of diverse resources distributed all over the world. These resources are
owned by different organizations having different policies and objectives
which need to be considered in making the resource allocation decisions.
In such complex environments market-based resource allocation proto-
cols are a better alternative to the classical ones because they take into
consideration the policies and preferences of both users and resource
owners. The only suitable solution for investigating the effectiveness of
these resource allocation protocols over a wide range of scenarios with
reproducible results is to consider simulations. Thus in this paper we
present Mercatus, a simulation toolkit that facilitates the simulation of
market-based resource allocation protocols. We describe the model and
the structure of Mercatus and present experimental results obtained by
simulating three types of auction-based resource allocation protocols.

1 Introduction

Grid technologies enable the sharing and coordinated use of diverse resources
distributed all over the world [1]. Resources may provide computing services,
data storage services, or may be sensors providing data capture services. The
resources in a grid environment are typically heterogeneous and are operated
by their owners under different policies. Moreover users and resource owners
have different objectives, sometimes contradictory. The resource management
mechanisms used in traditional computing systems cannot be simply applied
to these complex environments because they assume complete control over re-
sources. Thus we need new resource allocation protocols that take into account
the objectives of both users and resource owners. The solution is to consider
market-based resource allocation protocols [2, 3] which are based on trading and
resource brokering policies between resource owners and users. These protocols
are suitable for grid environments because of their decentralized structure and
the use of incentives for resource owners to contribute resources.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 176–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Mercatus: A Toolkit for the Simulation of M-B RAP in Grids 177

There exist two broad categories of market-based models for resource al-
location in grids: commodities markets and auctions [2]. In the commodities
markets model various services provided by the resource owners are treated as
interchangeable commodities. The resource owners determine the price for their
services and charge users depending on the amount of resource they consume.
In the auction model resource owners auction resources using different types of
auction mechanisms for establishing the price. Auctions are easier to implement
than commodities markets models because they require very little knowledge
about the global price. Auctions can be classified into two classes depending on
the type of interactions between sellers and buyers. In one-sided auctions bids
are submitted by the grid users to a central auctioneer. The auctioneer decides
the winner based on different auction mechanisms. Examples of one-sided auc-
tions are: First-price auction (the highest bidder wins and pays the amount he
bid) and Vickrey auction (the highest bidder wins and pays an amount equal to
the second highest bid) [4]. In two-sided auctions, also called double auctions,
both users and resource owners submit bids. To distinguish the bids we call ‘asks’
the bids submitted by the resource owners. The selling price and the users and
the resource owners that trade are decided by the central auctioneer according
to different types of double auction mechanisms.

The only suitable solution for investigating the effectiveness of these resource
allocation protocols over a wide range of scenarios with reproducible results is
to consider simulations. Thus in this paper we present Mercatus, a simulation
toolkit which provides a set of core abstractions and functionalities which allow
researchers to easily build simulators for the study of market-based resource al-
location protocols in grids.

Related Work. There exist a large body of work on economic-based resource
management models in distributed systems [3, 5, 6]. For a comprehensive sur-
vey of economic models for resource management see [2]. A number of research
projects addressed the simulation of scheduling and resource allocation protocols
in grids [7, 8, 9]. We discuss here three projects, SimGrid [9], GridSim [8] and
OptorSim [7] which are closely related to our work.

SimGrid [9], developed at UCSD, is a simulation toolkit which targets the
simulation of specific application domains and computing environments topolo-
gies. SimGrid’s C API provides functions for generation of resources and tasks,
and functions to schedule and unschedule tasks on resources. The main diffi-
culty when simulating market-based resource allocation protocols using SimGrid
comes form the fact that there is no support for implementing market-based allo-
cation protocols and the time accounting during the execution of these protocols
is not implicit. In Mercatus time accounting is implicit from the design of the
toolkit and it does not require special actions from the user.

GridSim [8], developed at the University of Melbourne, is a Java-based sim-
ulation toolkit which supports the simulation of application scheduling on het-
erogeneous Grid resources. GridSim API provides methods for task creation, re-
source management and scheduling. The main difficulty when simulating auction-
based resource allocation protocols comes from the fact that the resource broker

178 D. Grosu and U. Kant

which acts on behalf of the user and performs scheduling of user’s work on suit-
able resources, does not support mechanisms for continuous bidding as required
in the case of auction-based protocols. Also, the base class in GridSim does not
have support for implementing auctions. Thus in our simulation toolkit we pro-
vide a grid market auctioneer class which supports registration of resources and
conducts auctions supporting various bidding policies.

OptorSim [7], developed within the EU Data Grid project, is a Java based
simulator which allows the simulation of data replication algorithms in data
grids. It provides support for simulating peer to peer auctions for optimal replica
selection. The main focus is on data transfer and replication and not on job ex-
ecution.

Our Contributions. In this paper we introduce a new simulation toolkit, Mer-
catus, which provides basic constructs necessary to building simulators for the
study of market-based resource allocation protocols in grids. Currently, Mercatus
supports the simulation of several types of resource allocation protocols based
on one-sided and two-sided auctions. It allows the study of economic efficiency
in terms of costs, profits and payments and the study of system efficiency in
terms of execution time and resource utilization.

Organization. In Section 2 we present the simulation model and the resource
allocation protocols. In Section 3 we describe the design and structure of Merca-
tus and show how the resource allocation protocols are implemented. In Section
4 we show how to build simulations using Mercatus. In Section 5 we present sev-
eral simulation experiments showing the capabilities of our simulation system.
In Section we draw conclusions and present future work.

2 Mercatus Simulation Model

Mercatus assumes a grid system model in which there exist several heterogeneous
resources each offering services and several users that consume these services.
The resources are characterized by the following parameters:

(i) Processing rate: It is given in million instructions per seconds (MIPS).
(ii) Reservation price: It is defined as the minimum price accepted by a resource

for one second of task execution.
(iii) Cost : Represents the cost incurred by a resource for one second of task

execution.

Users are characterized by the following parameters:

(i) Work : It is defined as the total amount of work in millions of instructions
for all the tasks of a user.

(ii) Number of tasks: Represents the number of tasks of one user.
(iii) Budget : It is the maximum amount of ‘grid dollars’ (G$) a user can pay to

resources for executing his tasks.

The goal of the users is to finish their work at the earliest time and to pay as
little as possible out of their budget, whereas the resources are concerned with

6

Mercatus: A Toolkit for the Simulation of M-B RAP in Grids 179

maximizing their utilization and hence their profit. The price at which the trade
takes place is decided by the auction-based protocols. In Mercatus these auctions
are conducted by a Grid Market Auctioneer (GMA). Depending on the type of
auction, users or/and resources send bids to GMA. GMA decides the winner
depending on the auction mechanism used and declares the auction results to
users so that a winning user can send his task to be processed at an appropriate
resource. Auction results are also sent to resources so that they can identify the
winning user. The GMA keeps on conducting auctions until there is no user with
any task left. A user continuously participates in consecutive auctions until he
has no tasks left or he exhausted his budget. A resource continuously participates
in the auction until there is no user left with any tasks not executed. GMA, users
and resources are continuously interacting with each other. Mercatus does not
support the simulation of data transfers and data replications.

Mercatus allows the programmer to specify the bidding policy of each grid
user. The bidding policy can be constant or variable (depending on the budget
remaining, deadline, resource processing rate and a percentage increase specified
by the programmer). Also in two-sided auctions the asks of resources can be
constant or variable (a resource can decrease its asks if it didn’t win in the
last auction). Currently, Mercatus supports three types of resource allocation
protocols based on First-price, Vickrey [4] and Double auctions [10]. All these
protocols are implemented as part of the GMA. All the bids submitted by the
users are for a second of task execution at a given resource. In the following we
briefly describe these protocols.

First Price Auction Protocol (FPA): This protocol is run by GMA in behalf
of one resource. Users participating in this protocol bid without knowing what
the bid values of the other users are. The user who bids the highest wins the
auction and pays the amount he bid. The winning user sends the task to the
resource involved in the auction.

Vickrey Auction Protocol (VA): This protocol is run by GMA in behalf of
one resource. This protocol is based on Vickrey auction which is also called the
second-price auction. Users participating in this protocol bid without knowing
what the bid values of the other users are. The user who bids the highest wins
the auction and pays an amount equal to the second highest bid. The winning
user sends the task to the resource involved in the auction.

Double Auction Protocol (DA): Users send bids for a group of resources
where each resource has the same characteristics. We assume that m users de-
cided to participate in a double auction for a group of n resources. After GMA
collects all the bids {b1, b2, . . . , bm} and all the asks {a1, a2, . . . , an}, it does the
following:

(i) Sorts bids in decreasing order and asks in increasing order:
bπ(1) ≥ bπ(2) ≥ . . . ≥ bπ(m)
aσ(1) ≤ aσ(2) ≤ . . . ≤ aσ(n)
where π and σ are the permutations defining the orders statistics above.

(ii) Finds k such that bπ(k) ≥ aσ(k) and bπ(k+1) < aσ(k+1).

180 D. Grosu and U. Kant

(iii) Determines the trading price, t = 1
2 (bπ(k+1) + aσ(k+1))

(iv) If aσ(k) ≤ t ≤ bπ(k) notifies resource σ(i) and user π(i), i = 1, 2, . . . , k, that
they can trade at price t.

(v) If t ≥ bπ(k) or t < aσ(k) notifies resource σ(i) and user π(i), i = 1, 2, . . . , k−1,
that they can trade. Each resource gets aσ(k), and each user pays bπ(k).

(vi) GMA sends reject messages to resources and users that do not trade.

Users that trade send tasks to the corresponding resources and they execute
them. After receiving the results of the execution, users send payments to the
corresponding resources. If the condition in (v) holds, resource σ(i) receives aσ(k)
and user π(i) pays bπ(k), for i = 1, 2, . . . , k−1. As a result of this trade there is a
surplus of (k−1)(bπ(k)+aσ(k)). We assume here that this surplus is kept by GMA
which plays the role of a budget balancer. We also assume that bπ(m+1) is the
lowest possible valuation of the users, aσ(n+1) is the highest possible valuation
of the resources and that bπ(m+1) < aσ(n+1) holds.

3 Architecture and Implementation of Mercatus

Mercatus is a toolkit for the simulation of market-based resource allocation pro-
tocols in grid environments. It is a discrete event simulation toolkit written
in Java, based on the SimJava discrete event model [11]. We will first briefly
describe the SimJava package and then present the architecture and implemen-
tation of Mercatus.

SimJava Simulation Package. SimJava simulation package [11], implements
a discrete event model suitable for implementing general simulations. Events
are used at implementation level to model the behavior of respective entities in
terms of interactions. The entities interact with each other by passing events.
These events may be just simple notifications or may carry additional informa-
tion related to the notification. Each entity runs in a separate Java thread and
has a body() method which encodes its behavior. These threads run concur-
rently and entities communicate to each other through ports. The Sim system
object is responsible for initializing the simulation environment and linking the
various entities through their ports. It also takes care of the events ordering by
guaranteeing that the events dispatched by various entities are received by other
entities in the same order. Sim system also takes care of time accounting. More
details about SimJava discrete event model can be found in [11].

Mercatus Architecture. There are three major players in our grid simulation
model: users, resources and GMA. We model each of these three grid players
as SimJava entities, where User entity represents users, Resource represents
resources, and grid market auctioneer, GMA is the trusted party which resolves
the trading between users and resources. Each entity has two ports, ‘in’ and
‘out’. An entity uses the ‘in’ port to receive events from other entities and the
‘out’ port to send events to other entities.

Mercatus: A Toolkit for the Simulation of M-B RAP in Grids 181

SendBids

SendWorkRequest

SendWorkDoneAcknowledgement

ValidationSignalToResource

ParticipationRequestUser

NextAuctionUser

ParticipationAcknowledgementUser

SendFreeAgainToGMA

NextAuctionResource

AuctionResultToResourceAuctionResultToUser

ResourceInfoRequest ParticipationRequestResource

GMA ResourceUser

SendResourceInfoToUser
SendAsks

ParticipationAcknowledgementResource

Fig. 1. Events passed between entities

We describe the sequence of interactions among User, Resource and GMA en-
tities and the events passed during these interactions. The events being passed
can contain data corresponding to that particular event. The sequence of inter-
actions for one-sided auctions is as follows:

Phase I: Information collection and participation decisions

1. Resources notify GMA of their willingness to participate in an auction by send-
ing the ParticipationRequestResource event. The resource information is
sent to GMA together with this event. GMA acknowledges the receipt of re-
source information by sending ParticipationAcknowledgementResource.

2. Users request information about resources willing to participate in auctions
by sending ResourceInfoRequest. GMA provides resource information to
users by sending SendResourceInfoToUser. Users receive the information
and after analyzing it they decide to participate in some of the auctions. A
user notifies GMA about his decision to participate by sending Participation
RequestUser to GMA. After the event ParticipationAcknowledgementUser
is received by the user, he is ready to participate in the auction.

Phase II: Conducting the Auction

1. Participating users send bids by using the event SendBids.
2. GMA runs the auction and notifies User (by sending AuctionResultsToUser)

and Resource (by sending AuctionResultToResource) about the result of
the auction.

3. The winning user sends the task to the corresponding resource using Send
WorkRequest. The resource acknowledges the receipt of the work by sending
SendWorkDoneAcknowledgment.

182 D. Grosu and U. Kant

simjava

Sim_event Sim_system Sim_type_pSim_entity

User

body()
getnumberoftasks()
getwork()
getworkdone()
setworkdone()
User(String,double,double,double,

 double, int, double)

body()
Resource(String,double,
 ResourceInfoToGMA)

getPercentDeclineInAsk()

GMA
Auction

Auction()

initialise()

activeresources()
activeusers()
body()
findresourceid()
finduserid()
getdelaybetweenauctions()
getname()
GMA(String,double,double)

Resource

start_simulation()

CreateGroup(int,double,
int,int,double,double)
findGroup(int)
groupCount()
GroupProcessingPower(int)
groupsize(int)
MarkResourceDirtyInGr(int)
MarkResourceValidInGr(int)
ValidGroups()
ValidityOfGroups()

Fig. 2. Mercatus class diagram

4. A new auction starts which involves the resources that are idle and willing
to participate. GMA informs users and resources that it is ready to start the
next auction by sending NextAuctionUser. SendFreeAgainToGMA is used by
a resource to inform GMA that it is idle again and will participate in the next
auction. ValidationSignalToResource acknowledges that the resource is
validated and it can participate in the next auction.

The sequence of event passing is shown in Figure 1. In case of the two-sided
auctions two other events are needed, SendAsks and NextAuctionResource.
They are represented in Figure 1 using dotted lines.

The main SimJava classes used to build the Mercatus toolkit are: Sim system,
Sim entity, Sim event, and Sim type p. Based on these classes provided by
SimJava our toolkit implements nine classes. We can categorize these nine classes
into three groups: (i) Auction class (main class), (ii) entity classes, and (iii)
wrapper classes. In Figure 2 we present the class diagram of the Mercatus toolkit.

(i) Class Auction: This class is responsible for running the simulation. The
initialise() method initializes the simulation and defines various parame-
ters such as the number of users and the number of resources. It also declares
objects of these entities each with different bidding policy parameters. The Auc-
tion class provides a method for starting the simulation (start simulation())
and methods for managing groups of resources: CreateGroup(), creates a group
of resources all having the same characteristics; findGroup(), finds and returns
the group number of a resource with a given id; groupcount(), returns the total
number of groups of resources; GroupProcessing Power(), returns the process-
ing power of a resource belonging to a group; groupsize(), returns the number
of resources belonging to a particular group; MarkResourceDirtyInGr(), marks

Mercatus: A Toolkit for the Simulation of M-B RAP in Grids 183

resource availability as false; MarkResourceValidInGr(), marks resource avail-
abilit y as true; ValidGroups(), returns the number of valid group of resources;
and ValidityOfGroup(), returns true or false depending on whether the group
has at least one resource available or not.

(ii) Entity classes: These classes model the users, resources and GMA.
Class User: The body() method is used to model the behavior of User.

This method is inherited from Sim entity class of SimJava. This class provide
methods for: getting the number of tasks of a user, getnumberoftasks(); getting
and updating the work completed, getworkdone() and setworkdone(); and
getting the total work of a user, getwork().

Class GMA: The body() method is used to model the behavior of GMA. This
method is inherited from Sim entity class of SimJava. GMA provides methods for:
getting the number of resources currently available, activeresources(); getting
the number of users currently willing to participate, activeusers(); finding a
resource in the list of all resources, findresourceid(); finding a user in the list
of all users, finduserid(); returning the delay between two successive auctions
(the delay is set in the constructor of GMA), getdelaybetweenauctions(); and
getting the name of GMA, getname().

Class Resource: The body() method is used to model the behavior of the
resource. This method is inherited from Sim entity class of SimJava. It pro-
vides a method for getting the percent decline parameter in asks of a resource,
getPercentDecline InAsk().

(iii) Wrapper classes: We implemented several wrapper classes which are used to
pass information between entities along with an event. Due to space limitation
we are not able to describe these classes here.

4 Building Simulations with Mercatus

In Figure 3 we present a simple example of Mercatus code fragment in which
we simulate ten resources and five users. This example shows that Mercatus is
a very efficient tool and it is very simple to use.

The first step of any simulation is to initialize the simulation environment by
calling initialise() method with the following parameters: auction type, num-
ber of resources, number of users, number of rounds, bidding policy and network
latency. Next we add as many users as we specified in the above step by calling
addUser(). The parameters of addUser() method are: user name, total work,
deadline, budget, number of tasks, and percentage increase of bids. Resources are
added by calling CreateGroup() method once for each group of resources with
identical characterstics. The parameters of this method are: number of members,
processing rate, cost and percentage decrease in asks. The total number of re-
sources over all groups should be equal to the total number of resources specified
in the initialise() method. Finally, we call start simulation() which links
the ports of all entities and starts the simulation.

184 D. Grosu and U. Kant

 public static void main(String[] args) {

 Auction.initialise(0, 5, 10, 25, 0, 0.1);

 Auction.addUser("User0", 4.2, 5, 100, 4, 56);
 Auction.addUser("User1", 6.5, 6, 150, 4, 80);
 Auction.addUser("User2", 3.0, 4, 180, 5, 70);
 Auction.addUser("User3", 4.0, 10, 100, 3, 61);
 Auction.addUser("User4", 4.25, 5, 100, 5, 76);

 Auction.CreateGroup(6, 50, 400, 30);
 Auction.CreateGroup(4, 100, 800, 80);

 Auction.start_simulation();

 }
}

Fig. 3. Sample code fragment for creating simulations

5 Simulation Experiments

In order to show the capabilities of Mercatus we present a case study in which we
simulated a grid environment consisting of 15 resources shared by 10 users. The
resources are divided into two groups. The parameters of users and resources
are given in the Table 1 and Table 2. The work of each user is in millions of
instructions. Members indicate the number of resources belonging to the group.
In these experiments we assume that the reservation price is equal to the re-
source cost. All the simulation experiments are run for 25 auction rounds and
considering a network latency of 10−5 seconds.

Mercatus facilitates the evaluation of market-based resource allocation pro-
tocols in terms of their economic efficiency by reporting user spending, resource
cost and resource profit. It also also allows the study of system efficiency in terms
of execution time and resource utilization. In the following simulation study we
present a number of plots showing some of these metrics.

Resource Profit. In Figure 4 we present the profit of each resource as percent-
age of the cost. For most of the resources the profit obtained in VA is less than
that in FPA. This is because in VA the winning user pays an amount equal to
the second highest bid, while in FPA the winning user pays an amount equal
to the highest bid. The exceptions are resources 4, 10, 11 and 12 which gain a
higher profit than in FPA. This is because resources register in random order
and the order of resources in FPA and VA is not the same.

In DA we observe that resource 9 gains a very low profit. This is because
resource 9 won three times during the 25 rounds, but every time it won according
to the second case of DA protocol where the seller gets ak. Resources 5 and 7

Table 1. Users’ parameters

User 0 1 2 3 4 5 6 7 8 9
Work 4.2 6.5 3.0 4.0 4.25 5.9 4.0 5.0 4.6 3.1
Budget 100 150 180 100 100 140 100 160 200 140
Number of tasks 4 4 5 3 5 5 6 7 4 5

Mercatus: A Toolkit for the Simulation of M-B RAP in Grids 185

Table 2. Resources’ parameters

Group Members Processing rate (MIPS) Cost ($G)
0 6 50 400
1 9 100 800

Fig. 4. Resource rofit

Fig. 5. Resource tilization

gain high profit in DA because both resources won only one task each during
the 25 rounds of DA. Furthermore they won according to the first case of DA
protocol where winner gets t. Since the budget of the users is high the value of
the trading price t is also high.

Resource Utilization. The resource utilization for each resource in the system
is presented in Figure 5. We observe that for FPA and VA the utilization is very

u

p

186 D. Grosu and U. Kant

high because during most of the auction rounds of these protocols all available
resources get a user task. In the first auction one of the users has seven tasks,
so seven out of fifteen resources will get a task. In the next auction these seven
resources will be busy servicing user tasks, but remaining eight resources will be
available and will get and execute other user tasks. In this way during most of the
auction rounds the number of available resources is less than the total number
of tasks a user has and hence during most of the auctions either a resource is
winning a task or is servicing a user task it won during the last auction. Thus
the resource utilization is high in case of FPA and VA.

Fig. 6. Effect f etwork atency n esource tilization

For DA the resource utilization is not always high and is less than that of
FPA and VA. This is because in case of DA at least two resources should be in
a group for the DA protocol to be applied. Also DA protocol is based on the
equilibrium of buyers bid and sellers ask and any resource which is beyond this
equilibrium point does not win the auction. So in case of DA it is not guaranteed
that a resource will win a task even if there are sufficient users.

Effect of Network Latency on Resource Utilization. In Figure 6 we
present the resource utilization for different network delay values and consid-
ering the DA protocol. In most of the cases the resource utilization decreases as
network latency increases. This is because more time is spent in communication
as compared to the time spent executing tasks. There are two exceptions at re-
sources 2 and 7 where the utilization is high even though the network latency is
increased from 10−5 to 10−2 seconds. This is because DA requires that at least
two resources should be available and as latency is high it is highly probable
that during the next auction more resources will be available. Hence it is more
probable that for each auction there are enough resources to apply DA and thus
utilization is increased.

uo on l r

Mercatus: A Toolkit for the Simulation of M-B RAP in Grids 187

6 Conclusion

In this paper we introduced Mercatus, a simulation toolkit that facilitates the
simulation of market-based resource allocation protocols. We described the model
and the structure of Mercatus and presented experimental results obtained by
simulating three types of auction-based resource allocation protocols. In the fu-
ture versions of Mercatus we will provide support for implementing other market-
based resource allocation protocols (e.g. combinatorial auctions, commodities
markets) and also more features that will make it more flexible. Mercatus v1.0
has been released and it is available at http://mercatus.cs.wayne.edu.

References

1. Foster, I., Kesselman, C.: The Grid: A Blueprint for a New Computing Infrastruc-
ture. 2nd edn. Morgan Kaufmann, San Francisco, CA (2003)

2. Buyya, R., Abramson, D., Giddy, J., Stockinger, H.: Economic Models for Resource
Allocation and Scheduling in Grid Computing. Concurrency and Computation:
Practice and Experience. 14 (2002) 1507-1542

3. Wolski, R., Plank, J. S., Brevik, J., Bryan, T.: Analyzing Market-based Resource
Allocation Strategies for the Computational Grid. Int. J. of High Performance
Computing Applications. 15 (2001) 258-281

4. Vickrey, W.: Counterspeculation, Auctions, and Competitive Sealed Tenders. J. of
Finance. 16 (1961) 8-37

5. Abramson, D., Buyya, R., Giddy, J.: A Computational Economy for Grid Comput-
ing and its Implementation in the Nimrod-G Resource Broker. Future Generation
Computing Systems. 18 (2002) 1061-1074

6. Gomoluch, J., Schroeder, M.: Market-based Resource Allocation for Grid Comput-
ing: A Model and Simulation. Proc. of the 1st Int. Workshop on Middleware for
Grid Computing. June (2003) 211-218

7. Bell, W. H., Cameron, D. G., Capozza, L., Millar, A. P., Stockinger, K., Zini, F.:
OptorSim - A Grid Simulator for Studying Dynamic Data Replication Strategies.
Int. J. of High Performance Computing Applications. 17 (2003) 403-416

8. Buyya, R., Stockinger, M.: GridSim: A Toolkit for the Modeling and Simulation
of Distributed Resource Management and Scheduling for Grid Computing. Con-
currency and Computation: Practice and Experience. 14 (2002) 1175-1220

9. Casanova, H.: SimGrid: A Toolkit for the Simulation of Application Scheduling.
Proc. of the IEEE/ACM Int. Symp. on Cluster Computing and the Grid. May
(2001) 430-437

10. McAfee, R. P.: A Dominant Strategy Double Auction. J. of Economic Theory. 56
(1992) 434-450

11. Howell, F., McNab, R.: SimJava: A Discrete Event Simulation Package for Java
with Applications in Computer Systems Modeling. Proc. of the 1st Int. Conf. on
Web-based Modeling and Simulation. January (1998) 252-259

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 188 – 196, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Resource Monitoring and Management Middleware
Infrastructure for Semantic Resource Grid

Fawad Nazir1, Hafiz Farooq Ahmad2, Hamid Abbas Burki1,
Tallat Hussain Tarar1, Arshad Ali1, and Hiroki Suguri2

1 National University of Science & Technology,
Rawalpindi, Pakistan

{arshad.ali, fawad.nazir, hamid.abbas,
tallat.tarar}@niit.edu.pk

2 Communication Technologies,
Sendai, Japan

{farooq, suguri}@comtec.co.jp

Abstract. The Semantic Grid is an extension of the current Grid in which in-
formation will be given well-defined meaning, better enabling computers and
resources to work in cooperation and coordination. The architecture of Seman-
tic Grid adopts a service-oriented perspective in which distinct entities are rep-
resented as software agents, provide services to one another. Traditionally Grid
management frameworks are based upon fixed management functionality and
fixed interaction interfaces that cannot satisfy the flexibility and complexity that
the dynamic Semantic Resource Grid demands. Agent technology is promising
in this domain since it facilitates automatic negotiation of services contracts a
dynamic configuration of those services, thus enhancing the provisioning for
semantic grid services. In this paper we propose an infrastructure for resource
monitoring and management in Semantic resource Grid. Our architecture uni-
fies sharing and managing of heterogeneous resources across the Grid. The re-
sources will be able to actively find and advertise services. The resources will
be arranged into groups which will enable the resource to have common under-
standing. We used agents in our architecture which enable the resources to have
effective negotiation, support dynamic services and services utilization and ad-
vertisement. In this way we can achieve self-controllability and self-
coordinability among Grid resource. We argue that semantics is a key to auton-
omy of the operation and management in emerging complex dynamic systems,
such as Semantic Grid. Our architecture could be a part of resource monitoring
and management middleware in the Semantic Resource Grid.

1 Introduction

Resources are an integral part of the Grid which is an emerging technology for ena-
bling resource sharing and coordinated problem solving in dynamic multi-institutional
virtual organizations [1, 2]. Grids resources are identified by their attributes. Resource
attributes have various degrees of dynamism, from mostly static attributes, like oper-
ating system version, to highly dynamic ones, like network bandwidth or CPU load
[1]. Most of the computational resources in the world are underutilized. The Grid can

 A Resource Monitoring and Management Middleware Infrastructure 189

unify these resources to be used as a single resource. Sharing computing resources
naturally increases the computing capacity available to all participants, since one
research project may use many computing resources while other projects are not using
computational power. Computational Grids [2] utilize internet connected resources as
a source of cheap computational power. The resources in computational grids can be
computers, storage space, sensors etc. The grid is made up of a variety of remote
resources that are owned by many different people and organizations. Wide varieties
of geographically distributed resources such as computers, supercomputers, storage
systems, data sources are unified forming a Grid. In distributed systems such as the
Grid, resources are reserved and released dynamically, network links fail independ-
ently and unpredictably, machines and servers connect and disconnect in an arbitrary
way. The Grid being built in this third generation is heading towards what is termed
as the Semantic Grid. The Semantic Grid is characterized as an open system in which
computational resources (owned by different organizations), software components,
users come and go on a continual basis [4].The realization of the Semantic Grid re-
quires an infrastructure where all resources, including services, are adequately de-
scribed in a form that is machine-process able. The Semantic Grid is addressing the
way that information is represented, stored, accessed, shared and maintained - infor-
mation is understood as data equipped with semantics. The 'semantics' permeates the
full vertical extent of the Grid and is not just a semantic (or knowledge) layer on top:
it is semantics in, on and for the Grid. The Semantic Grid involves all three concep-
tual layers of the Grid: knowledge, information and computation/data. The comple-
mentary layers will ultimately provide rich, seamless and pervasive access to globally
distributed heterogeneous resources [5]. The Grid requires a high degree of automa-
tion in order to support flexible collaborations and resource utilization. Moreover, this
environment should be personalized to the individual participants and should offer
seamless interactions with both software components and other relevant users. The
Semantic Grid is comprised of easily deployed components whose utility transcends
their immediate application, providing a high degree of easy-to-use and seamless
automation and in which there are flexible collaborations and computations utilizing
the available resources in an intelligent and efficient way. In our approach we will be
providing the capability of monitoring distributed computational resources effectively
is a crucial factor for high-performance distributed computation. Monitoring the be-
havior of the resources of a distributed computation system is necessary, both for
determining the cause of performance problems, and for tuning the system, in order to
optimize its use and therefore its performances. As long as the distributed systems on
which we operate become bigger and are more widely distributed (as it happens for
Grid environments), the automating the operations of monitoring becomes important.
Our architecture for monitoring and management of Semantic Resources Grid is
based on autonomous entities like agents and they are used for activating all monitor-
ing tools for the different resources involved with an application, collecting such data
and filtering them for obtaining useful information. We have used the mobility prop-
erty of the agent that enables the dynamic monitoring components to be loaded on the
machine automatically. The monitoring of those resources is based upon publish sub-
scribe model. Negotiation framework for agents is used to discuss the monitoring

190 F. Nazir et al.

parameters and decide the mechanism and policy to monitor and utilize resources. If
during negotiation some new parameter are identified to be monitored and not cur-
rently present in the resource. The particular module which will be used to monitor
the new parameters is loaded dynamically on the resource and is published using the
framework for utilization. Now in the later sections we will briefly discussing about
the motivation of this research work and current related work.

2 Motivation

In the existing Grid implementations the monitoring of resources means getting the
values of predetermined attributes from the resource which is to be monitored. The
resources entertain monitoring requests for only a limited number of attributes and are
unable to provide values of other attributes if requested. This is because of static
monitoring mechanisms which only return the values of predetermined attributes.
What is lacking is way of updating the internal monitoring mechanism of the re-
sources so they can adapt to the monitoring requests for other parameters. Mobile
agents are agents that can physically travel across a network, and perform tasks on
machines that provide agent hosting capability therefore they can act as a means of
updating the internal monitoring mechanisms of the resources by bringing new code
implementation which is required to gather information about the requested attribute.

3 Related Work

Not much work has been done in this area of research. Even the concept of Grid re-
source monitoring is in the stage of refinement. The monitoring architectures need to
be designed so that they can cope with the heterogeneity and dynamic nature of the
Grid resources and changing requirements. The Grid Performance Working Group of
GridForum [6] is currently dealing with the Grid monitoring. They have proposed a
possible architecture, in one of the papers ([7]), for maintaining and accessing per-
formance information. In another paper [8] a system for managing monitoring sensors
is proposed in which software agents are used in a producer/consumer model. In an-
other paper [9] the use of mobile agents is proposed for active monitoring in Grid
environments. An approach for the dynamic measurement of the performances of an
application in Grid environments is presented in the Pablo scalable information toolkit
[10]. The Monitoring and Discovery Service (MDS), the information services compo-
nent of the Globus Toolkit, is also dealing with resource monitoring [11]. The MDS
provides Grid information such as the available resources and the state of the compu-
tational Grid. This information may include properties of the machines, computers,
and networks in your Grid, such as the number of processors available, bandwidth,
storage devices, network interfaces, CPU load, file system information, and memory.
It uses the Lightweight Directory Access Protocol (LDAP) to provide middleware
information in a common interface. MDS includes two components: the Grid Re-
source Information Service (GRIS) and the Grid Index Information Service (GIIS).
With the MDS, you can publish information about almost anything in your Grid [12].

 A Resource Monitoring and Management Middleware Infrastructure 191

4 Architecture

In this section we will discuss architecture of the framework, which will be used for
resource monitoring and management in Semantic Resource Grid. In our approach we
provide an agents based infrastructure over which multiple resources (services pro-
vided be computational and data resources) can register there services for other users
to subscribe and utilize based on negotiated parameters. The framework also provides
a provision to dynamically load and publish the modules which are not present in
some remote resource for monitoring and management. The monitoring and manage-
ment services are constructed, maintained and derived using specialized co-operating
and negotiating agents. Now we will present four major agents which will be coordi-
nating to provide this infrastructure.

4.1 Autonomous Grid Resource Management Agent

When ever a resource becomes part of Semantic Resource Grid it publishes its self.
The autonomous grid resource management agent which is a software system is than
dynamically downloaded, executed and published on that resource using mobile agent
concept. This agent architecture is based on GMA so it provides functionalities such
as publish subscribe model, filtering of the monitored data and support push model
for monitoring parameters thus reducing unwanted network traffic. We argue that our
proposed architecture is autonomous as it provides functionality of equality, locality
and self-containment in all MoGiNMA implementations (sub-systems). Equality,
locality and self-containment are main components of autonomic controllability in
any sub system as part of Autonomous Distributed System (ADS).

4.2 Service Registrar Agent

A Service Registrar Agent provide the same functionality as the DF in a traditional
network, i.e., it must be a yellow pages service in which agents may register their
services, and search for services offered by other agents. As Services Registrar agent
also keep the same functions specified for the DF in FIPA00023. So, agents do not
need to modify the way they interact with the DF. Therefore, it will have the follow-
ing functions: register, deregister, modify and search. A Service Registrar Agent must
provide flexible service search mechanisms that include both local services (in the
same platform) and remote services. In the semantic Grid environment the remote
services will be dynamic as the resources will join and leave the group continually.

4.3 Information Services Agent

Resource discovery and utilization are challenging issue in the semantic grid. In Se-
mantic Grid dynamic and Distributed Resource Sharing is done. In the current imple-
mentation Grid users, administrators, and the Grid services themselves need directo-
ries to keep track of these entities and to maintain relationships between them. Grid
information services are a significant part of the “Resource” and “Collective” layers.
Keeping in view the concept of VO as a set of institutions, users, and resources,
grouped together for sharing resources in the grid we can think of semactic grid as
dynamic pool of resource in which resource become part of Grid for limited time and

192 F. Nazir et al.

resource and giving limited services. So now in our proposed architecture we can not
call information services we will call it dynamic pool of resources which will be
monitored and managed by remotely downloaded monitoring and management com-
ponents.

4.4 Resource Broker Agent

The Resource Broker (RB) is a middleware that supplies distributed clients with job
execution at the more likely Computing Element (CE) in a heterogeneous computing
environment. Client applications are provided with a set of API for sending requests
and receiving response to/from RB servers. The RB server is responsible for carrying
out tasks to satisfy the client requests. In our case we will be providing load services
of dynamic resources pools on which the job will be scheduled. In this way user job
can be predicted and user will be will given a time and resource estimations based on
the prediction of the monitoring parameter.

ï

Fig. 1. Basic Architecture for Semantic Sharing of monitoring Data in Semantic

In Figure 1 we have explained how the Autonomous Grid Resource Management
Agent, Service Registrar Agent, Information Services Agent and Resource Broker
Agent are interconnected and how and what do they communicate? This architecture
which we have designed for the monitoring of Semantic Grid systems is based the
features of agent platform which is used for the basic environment for the execution
of agents in the system. This architecture is totally based on the agents ability to trans-
fer the code dynamically (mobility) and the concept of negotiation.

5 Monitoring System Architecture

The monitoring system architecture of our proposed system is discussed in this sec-
tion. The main components of our system are ontology repository, subscriber handles,

 A Resource Monitoring and Management Middleware Infrastructure 193

directory service, self-monitoring and self-organizing, negotiation module and deci-
sions making module. In this section we will be explaining each and every module in
detail. In our current architecture the ontology is centralized. The ontology repository
is accessible by all the involved agents to enable understanding the negotiations
terms. Subscriber handler is also a repository that is there in each monitored resource,
this repository actually contains the information of the consumers to which the
trap/event data is to send after certain time intervals. The time intervals are specified
at the time when the consumer subscribes to certain service. The directory service is
an important part of this architecture.

Fig. 2. Architecture of the Monitoring System

In the directory service all the services that monitored devices provide are pub-
lished. The service discovery algorithm that the consumers have is destined to these
directory services. The self-monitoring and organizing module is used to monitor the
resource parameters like (CPU Utilization, Memory Utilization etc) and keep the
monitoring information in some persistent storage. The next is the negotiation module
that is used by the agent to negotiate with other agents. The purpose of negotiation
could be to share ontology information and to resolve monitoring and management
problems. The negotiation module has further three layers message building, message
queuing and message transmission. The message-building layer is responsible to build
a message in a specific format and send the message to other peer agents or the sub-
scriber for negotiation the parameters of monitoring and monitoring policies. The
message is then encapsulated into an ACL header and sends to the next message
queuing layer. The message queuing layer is than responsible to queue the messages
and send to the upper layer when appropriate to send. The upper layer is message
transmission layer this layer is actually responsible to send the message to the desired
recipient. The message transmission layer check for the destination ID and transmits
the message accordingly. The decision-making module is responsible to take deci-
sions in case of any unwanted event occurred in the resource. This decision-making
module is highly scalable as we can always-new intelligent components to make this
module more and more intelligent and specific. If some unwanted event has occurred
and the decision making does not know what action is to be taken in that specific

194 F. Nazir et al.

conditions, in such cases that particular monitoring agent will negotiate with its peers
agents and if possible solution is found then this new decision making module will be
integrated to the existing. In this way we take full advantage of the mobility feature of
the agents. This feature is also explained in detail in the next section.

6 Scalability Issues

In our architecture we will enable negotiation between different grid components. All
the monitoring parameters will be decided on run time while negotiation. This is all
explained in the above mentioned architectures. Now in this section we will be dis-
cussing that how scalability will be ensured. With scalability we mean the possibility
of dynamic addition of monitoring logic to allow the monitoring of additional pa-
rameters. Initially the parameters to be monitored will be finalized though negotia-
tions. The logic for monitoring those parameters need not be available there on the
resource initially. Monitoring logic for some of the parameters may already be there
but the additional monitoring logic required will be needed to fulfill the monitoring
request for all the agreed upon parameters. This is where the mobile agents contribute
by exploiting the notion of mobile code. The mobile agents will bring the required
logic to the resource thus allowing the monitoring of all the requested parameters.

7 Dynamic Service Availability and Publishing

If in the grid any resource can measure memory and CPU utilization. But the system
cannot monitor the network, we have to provide a service at runtime that enhance the
capability of the system. Now the system has the capability that it can monitor the
network using the service that we have made available and published. How we will
provide and publish the service? We will provide the service according to the way as
described above in scalability issues portion. For publishing the service we will fol-
low publish and subscribe model. Publish and subscribe model is a mechanism for
sharing data between applications and for workgroup collaboration. Applications can
"publish" their data to a file, which will automatically notify all documents that have
"subscribed" to that file, and those documents then update to reflect the most recently
published data. Networking technologies and products enable a high degree of
connectivity across a large number of computers, applications, and users. In these
environments, it is important to provide asynchronous communications for the class
of distributed systems that operate in a loosely-coupled and autonomous fashion, and
which require operational immunity from network failures. This requirement has been
filled by various middleware products that are characterized as messaging, message
oriented middleware, message queuing, or publish-subscribe. Applications that
communicate through a publish and subscribe paradigm require the sending
applications (publishers) to publish messages without explicitly specifying recipients
or having knowledge of intended recipients. Similarly, receiving applications
(subscribers) must receive only those messages that the subscriber has registered an
interest in. In our case we will publish the service by using “Directory Facilitator”.
Directory Facilitator (DF) is an optional component of multi agent system. It is re-

 A Resource Monitoring and Management Middleware Infrastructure 195

sponsible to provide yellow-pages directory service to other agents. Agents may reg-
ister their services to the DF or query the DF to find out what services are offered by
other agents. Agent is responsible to provide information related to service e.g. ser-
vie_type, service_name etc. Furthermore, an agent can also deregister or modify ser-
vice.

8 Conclusion

Semantic Grid is an ambitious and exciting global effort to develop an environment in
which individual users can access computers, databases and experimental facilities
simply and transparently, without having to consider where those facilities are located
and the resources could dynamic configuration of components and coordination with
other resources to solve issues. The resources are the most critical part of Grid sys-
tems. Grid systems are complex and highly scalable so there is a need to develop
systems that is autonomic [13] in nature and aims at bringing a new level of automa-
tion like self-healing, self-optimizing, self-configuring and self-protection functions
[14]. This paper focus on resource monitors and management middleware infrastruc-
ture for semantic resource grid using mobile agents negotiation and mobility property.
We are carrying out the implementation of the proposed system. This concept can
provide strong foundation that lead toward autonomic computing realization envi-
ronment. Negotiation is a key to scalable and adaptive autonomous distributed sys-
tems and mobility property can provide with self and dynamic configuration. In future
we plan to implement peer to peer system which wills middleware independent and
monitoring and management will be totally local and distributed. The ontology infor-
mation will also be distributed on each resource.

Acknowledgement

We would like to thank participants of Grid Computing and Multi-agent systems
workshop held at NUST Institute of Information Technology, Pakistan for their
comments on the paper. We would like to thank Mr. Kashif Iqbal and Mr. Aamir
Shafi for there guidance and support in writing research paper and implementation of
our system.

References

[1] Adriana Iamnitchi, Ian Foster. On Fully Decentralized Resource Discovery in Grid En-
vironments.

[2] Carl Kesselman, Ian Foster, editor. The Grid: Blueprint for A New Computing Infra-
structure. Morgan Kaufmann Publishers, San Francisco, 1999.

[3] S. Tuecke I. Foster, C. Kesselman. The anatomy of the grid: Enabling sdalable virtual
organizations. International J. Supercomputer Applications, 15(3), 2001.

[4] David De Roure, Nicholas R. Jennings and Nigel R. Shadbolt: The Semantic Grid: A Fu-
ture e-Science Infrastructure

196 F. Nazir et al.

[5] David De Roure, Mark A. Baker, Nicholas R. Jennings and Nigel R. Shadbolt: The Evo-
lution of the Grid

[6] GridForum. http://www.gridforum.org.
[7] R. Wolsky, M. Swany, and S. Fitzgerald. White Paper: Developing a Dynamic Perform-

ance Information Infrastructure for Grid Systems. February 2000. Available at
http://dast.nlanr.net/GridForum/Perf-WG/.

[8] B. Tierney, B. Crowley, et al. A Monitoring Sensor Management System for Grid Envi-
ronments. In High Performance Distributed Computing (HPDC-9, Pittsburgh (Pennsyl-
vania), August 2000.

[9] Antonio Puliafito, Orazio Tomarchio, Lorenzo Vita: ACTIVE MONITORING IN GRID
ENVIRONMENTS USING MOBILE AGENT TECHNOLOGY

[10] L. DeRose and A. Reed. SvPablo: A Multi-Language Architecture-Independent Per-
formance Analysis System. In Proceedings of the International Conference on Parallel
Processing (ICPP’99), Fukushima (Japan), September 1999.

[11] Karl Czajkowskiy Steven Fitzgeraldz Ian Fosterx{ Carl Kesselmany:Grid Information
Services for Distributed Resource Sharing_

[12] http://www-106.ibm.com/developerworks/grid/library/gr-ipmds.html
[13] Roy Sterritt, Dave Bustard. Autonomic Computing-A Means of Achieving Dependability
[14] Roy Sterritt, Dave Bustard. Towards Autonomic Computing Environment

A Service-Oriented Framework for Traffic
Information Grid�

Guozhen Tan, Chengxu Li, and Jiankun Wu

Department of Computer Science and Engineering,
Dalian University of Technology, 116024, China

gztan@dlut.edu.cn

Abstract. Intelligent Transportation System (ITS) refers to the use of
information technologies to address and alleviate transportation prob-
lems. The challenges of ITS exist mainly in synthesizing information from
geographically distributed, dynamic and heterogeneous databases, spe-
cialized sensors and other systems. This synthesis process is computation
and communication intensive. Computational Grid is a promising plat-
form for such large-scale data-intensive applications. Building on grid
computing technologies, this paper presents a novel infrastructure re-
ferred to as Traffic Information Grid (TIG) for ITS development and de-
ployment. The service-oriented and layered system architecture of TIG is
introduced and described. Two implementation modes-request/response
mode and subscribe/notify mode are presented and evaluated with real
traffic data respectively. In addition, an example application is given
to illustrate how the TIG works. Based on the practice of TIG, Grid
computing is proved to be an effective solution for data-intensive appli-
cations.

1 Introduction

Modern society is becoming increasingly information-oriented at the global level,
and the road traffic is no exception. The use of information technologies on
roads, traffic and vehicles has been promoted in order to solve numerous urban
transportation problems, such as traffic accident, congestion and environmen-
tal deterioration. This trend results in an increased focus on the research and
development of Intelligent Transportation System (ITS)[1, 2]. ITS is a typical
data-intensive, computing-intensive and mission-critical application. Its realiza-
tion highly depends on large-scale sharing and collaboration of traffic infor-
mation resources[1]. However, these requirements could not be satisfied by any
existing computational and data management infrastructure due to its geograph-
ically distributed, heterogeneous, large dataset size and dynamic characteristics.

� This work was supported in part by Grand 60373094 of National Natural Science
Foundation of China and Grand 2002CB312003 of High Tech. Research and
Development (973) Programme, China.

P. Herrero, M.S. Pérez, and V. Robles (Eds.): SAG 2004, LNCS 3458, pp. 197–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

198 G. Tan, C. Li, and J. Wu

Problems related to information sharing and cooperative use have been of cen-
tral concern in distributed application development, and have led to a new form
of information technology known as the Grid computing[3, 4]-an infrastructure
supports the sharing and coordinated use of diverse resources in dynamic, dis-
tributed Virtual Organizations (VO)[5]. In the first phase, Grid was proposed
for scientific and technical computing applications. Now the focus is going to
shift to commercial distributed computing applications [5, 6]. In this paper, we
apply Grid technologies to ITS development and deployment, in order to meet
the information sharing and collaboration requirements of ITS. This novel in-
frastructure is referred to as Traffic Information Grid (TIG) [7].

TIG is a hardware infrastructure and distributed software, which integrates
traffic data from various resources and turns it into information by intercon-
necting high-performance computers, huge storage systems, various traffic in-
struments, databases and other transportation systems in the heterogeneous,
dynamic and geographically distributed environment. The rest of the paper is
organized as follows: Section 2 presents and describes the service-oriented and
layered architecture of TIG. Section 3 discusses the traffic information services
in more detail and implements them with the Globus Toolkit 3.0. Section 4 gives
an example application to illustrate how the TIG works. Section 5 concludes the
paper.

2 System Overview

Information technology forms the basis for TIG, and the traffic data can be
divided into 3 categories according to their different sources: Dynamic Traffic
Data (DTD), Static Traffic Data (STD) and Public Traffic Data (PTD). DTD
is collected by dispersive traffic sensors in real-time, including traffic flow data
indicating the crowded degree of roads, traffic light state data indicating light
colors, traffic camera data indicating the real-time traffic video, etc. STD is
stored in various databases with different formats, including geography data,
road network data, traffic management data, etc. PTD is about airplane flight,
railway, public transportation, etc., which is provided by different departments
around the city. Traffic data has following characteristics:

– Data-intensive. The volume of traffic datasets needs to be measured in ter-
abytes and are still generated every seconds. Thus, there must be enough
storage resources to save such large amounts of data, as well as enough com-
putational resources to dispose them.

– Computing-intensive. Problems in traffic domain are usually complex prob-
lems or difficult problems, especially in order to meet people’s more and
more rigid requirements on real-time and accuracy. Solving such problems
requires high-performance computing abilities.

– Distributed. Traffic data is scattered dispersedly because of the distribution
of resources and the distribution of data consumers. It is impossible to find
such an exclusive data owner who manages the whole traffic data in a city.

A Service-Oriented Framework for Traffic Information Grid 199

– Heterogeneous. Heterogeneity means diversity in data sources, data formats
and data management systems. The heterogeneity makes the information
platform development cannot assume a specific target environment, but an
open system.

– Dynamic. The content of traffic data is changing frequently, and the fre-
quency is range form year (such as digital map information), day (such as
airplane flight information), to second (such as the traffic flow information).

TIG fuses distributed traffic data from different sensors or stored in different
databases with different formats, and turns it into various kinds of information,
which makes it possible to access them in a more flexible and convenient way.

2.1 Physical Elements

TIG is comprised by the following physical elements, as shown in Fig. 1:

– A large number of different traffic sensors, which are spatially dispersive in
the city and linked to the modems by voice lines, then connected to the TIG
through the sensors and actuators management systems (SAMS).

– A large number of Internet sites providing public traffic data as airplane,
train, bus, etc., which are connected to the TIG through gateways.

– A large number of database servers, which installing with different database
management systems (DBMS) and running on different kinds of software
and hardware platforms.

– A large number of information servers, which are the main parts of TIG and
responsible for data integrating and information publishing.

– A large number of transportation systems, which are the information con-
sumers.

– Networks, which provide (hopefully high performance) connectivity among
the various elements just listed.

SAMS

Database

servers

Information

servers
Various

transportation

systems

gatewayInternet
Mordem

Fig. 1. Physical elements of TIG

200 G. Tan, C. Li, and J. Wu

2.2 System Architecture

The system architecture of TIG presented in this paper is based on the Open
Grid Services Architecture (OGSA) [8]. OGSA defines a uniform exposed Grid
services semantics and mechanisms for creating, naming and discovering tran-
sient Grid service instances, provides location transparency and multiple pro-
tocol bindings for service instances, and supports integration with underlying
native platform facilities. In OGSA, everything is treated as services, includ-
ing computational resources, storage resources, networks, programs, and so on
[8].The system architecture of TIG presented in this paper is based on the Open
Grid Services Architecture (OGSA) [8]. OGSA defines a uniform exposed Grid
services semantics and mechanisms for creating, naming and discovering tran-
sient Grid service instances, provides location transparency and multiple pro-
tocol bindings for service instances, and supports integration with underlying
native platform facilities. In OGSA, everything is treated as services, including
computational resources, storage resources, networks, programs, and so on [8].
The service-oriented, layered system architecture of TIG is illustrated in Fig. 2
and described in the following:

Service Service...

Factory

Factory

...

Registry

Mapper

Service Service...

Factory

Factory

...

Registry

Mapper ...

Service Service...

Factory

Factory

...

Registry

Mapper

GEIS

Factory

VSIS

Factory

TMIS

Factory

VDIS

Factory

PTIS

Factory

RPIS

Factory
Registry

MapperService Service Service Service Service...

SAMSDBMS DBMS DBMS SAMS SAMS PTIS PTIS PTIS

VLIS

Factory

Fig. 2. System architecture of TIG

The overall system can be divided into 3 layers. The bottom layer is mul-
tiple data sources, including database management systems (DBMS), sensors
and actuators management systems (SAMS), as well as public traffic informa-
tion systems (PTIS), which provide all kinds of traffic data. The middle layer
includes several heterogeneous and geographically distributed simple hosting

A Service-Oriented Framework for Traffic Information Grid 201

Table 1. The service contents of TIG

Service name Service contents
GEIS Highroad, street, building, schools, place name, etc.
GSIS Optimal path selection, driving assistant, etc.
TMIS Vehicle amount, road status, road flow, etc.
VDIS Vehicle driving condition, road congestion, etc.
PTIS Car navigation, car scheduling, car parking, etc.
RPIS Road status within or across the city, etc.
VLIS Car location, accident location, congestion location, etc.

environments. Each hosing environment is responsible for a specific kind of data
fusion services. Its user interface can be structured as a registry, one or more fac-
tories, and a handleMap service. Each factory registers with the registry service.
When a factory receives a request to create a Grid service instance from above,
the factory invokes hosting-environment-specific capabilities to create the new
instance-usually a process, assigns it a handle, registers the instance with the
registry, and makes the handle available to the handleMap service. The top layer
provides a new abstraction based on the middle level. Its user interface also can
be structured as a registry, several factories and a handleMap. However, once a
factory receives a createService request from the user or another service, it del-
egates the request to a corresponding factory in the middle level. In other word,
the top layer is just as a facade, which hides the complex and trivial details of
middle layer from its users and provides an impression of one homogeneous and
centrally managed environment.

The TIG, until now, provides 7 different kinds of traffic information services,
which are characterized by 7 different factory services in the top layer of the
architecture. Each information service has several operations. The contents of
the services are illstrated in Table 1.

3 Implementation

The traffic information services provided by TIG fall into 2 categories: static traf-
fic information services (STIS) and real-time traffic information services (RTIS).
The information provides by STIS is nearly time invariant-such as geography in-
formation, transportation infrastructures information, etc. And the information
provided by RTIS is time variable-such as the road traffic flow information, traffic
accidents information, etc. According to this difference, we design two different
information grid service implementation modes respectively: request/response
mode for STIS and subscribe/notify mode for RTIS. We also implement and
evaluate both of them based on the Globus Toolkit version 3.0 [9].

3.1 Request/Response Mode

The information provided by STIS is nearly unchanged, so the information con-
sumers needn’t query if the information has been changed while running. Fig. 3

202 G. Tan, C. Li, and J. Wu

Registry

STIS-F

STIS-I

(1)Ask for factory

Return
factory handle

(2)Create service

Return STIS-I handle

Create
STIS-I

(3)Execute

Return Result

DBMS

DBMS

DBMS

query

query

query

Grid Service Container

Information
requstor

Fig. 3. Request/response mode for STIS

illustrates the structure and a possible workflow of STIS. The numbers on the
arrow represent the sequence in which actions are executed:

(1) Communicating with the registry of the VO (Registry, a standard grid ser-
vice instance supporting the Registry interface for registration) and request-
ing the grid service handle (GSH) for the static traffic information service
factory (STIS-F).

(2) Calling the factory (STIS-F, a user defined grid service instance supporting
the Factory interface for service creation), which creates the static traffic
information service instance (STIS-I) and returns the GSH for it.

(3) Calling the STIS-I (a user defined grid service instance) and submitting the
request. The STIS-I executes the query against the database and encapsu-
lates the result into corresponding information, then return to the requestor.

The curve of time cost with different amount of data transfer is illustrated
in Fig. 4.

0

200

400

600

800

1000

1200

1400

20 420 820 1220 1620 2020 2420 2840
data tranfer amount (k)

tim
e

co
st
(
m
s
)

Fig. 4. Data transfer performance

3.2 Subscribe/Notify Mode

In contrast with static traffic information, the real-time information changes fre-
quently. If we still adopt the request/response model mentioned in section 3.1,

A Service-Oriented Framework for Traffic Information Grid 203

Registry

RTIS-F

RTIS-I

(1)Ask for factory

Return
factory handle

(2)Create service

Return RTIS-I handle

Create
RTIS-I

(3)Subscribe

(4)Notify(*)

New data

gathered(*)

SAMS

SAMS

SAMS

New data
gathered(*)

New data

gathered(*)Grid Service Container

Information
requstor SAMS

SAMS

Fig. 5. Subscribe/notify mode for RTIS

0

20

40

60

80

100

120

140

1 9 1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0
5

1
1
3

1
2
1

1
2
9

1
3
7

1
4
5

1
5
3

1
6
1

1
6
9

1
7
7

1
8
5

1
9
3

tim
e

co
st

(
m
s
)

Fig. 6. Data notification performance

the information requestor must periodically ask the service instance if the in-
formation is changed while running. This is very inefficient, especially when
the query interval is short or there are dozens of applications aware of the
change. Subscribe/notify model, which is also named as notifications or ob-
server/observable [8], provides a more efficient approach to solve this problem.
The requestor makes an initial call asking the service to notify whenever there
are any changes, and the service will contact the requestor as soon as a change
occurs, then the requestor can act accordingly. This approach decreases the net-
work traffic and CPU use.

Fig. 5 illustrates the structure and a possible workflow of the real-time traffic
information service. The numbers on the arrow represent the sequence in which
actions are executed:

(1) Communicating with the registry (Registry) and requesting the GSH for the
real-time traffic information service factory (RTIS-F).

(2) Calling the RTIS-F, which creates the real-time traffic information service
instance (RTIS-I) and returns the GSH for it.

(3) Subscribing to a specific service data element (SDE) of the RTIS-I.
(4) The SDE notifies the requestors as soon as the RTIS-I receives new data

form SAMS.

204 G. Tan, C. Li, and J. Wu

The curve of response time with 200 continuous traffic flow information is
illustrated in Fig. 6.

4 An Example Application

From the application’s point of view, TIG is a collection of middleware traffic in-
formation services that provide applications with a uniform view of distributed
resource components and the mechanisms for assembling them into systems.
Building on TIG, traffic application developers needn’t to be aware of the un-
derlying distribution and heterogeneity of the TIG, but treat the TIG as a single
homogeneous and centrally managed virtual information system.

Dalian rapid response transportation systems (DRRTS) are developed based
on TIG to enhance Dalian’s rapid-response abilities under urgent conditions.
Consequently, to enhance the transportation capacity, release traffic congestions
and avoid traffic jams. DRRTS is the collection of dozens of sub-systems, which
have 12 main rapid-response functions listed as follow:

– tracking congestions by road transportation TV automatically;
– detecting and disposing congestions rapidly;
– creating green-wave plans rapidly;
– gaining the video of urgent events rapidly;
– arranging and scheduling policemen rapidly;
– checking policemen’s distribution rapidly;
– scheduling guard tasks automatically;
– detecting and disposing suspectable vehicles rapidly;
– detecting overtime parkings rapidly;
– diagnosing equipments rapidly;
– passing messages rapidly;
– gathering real-time mobile images.

Fig. 7 illustrates the architecture of the DRRTS. Whenever sub-systems need
information while computing, they simply tell the TIG what they want, but not
necessarily where it is located.

Data source

Traffic Information Grid

Data source Data source

Sub-system Sub-system Sub-system

Traffic participants

...

...

Fig. 7. DRRTS architecture

A Service-Oriented Framework for Traffic Information Grid 205

Shortest-path

selection

service

User

Road network
information
service

Real-time

traffic flow
information

service

Traffic

Prediction

Service

(1) Find the shortest

path from A to B

(2) traffic

condition
next time

(3) current
traffic

condition

information

(4) road network

information

Fig. 8. An example of TIG at work

Fig. 8 gives a more detailed scenario to explain how the TIG supports the
DRRTS. It depicts a situation in which user wants to find the shortest path form
A to B with the help of DRRTS. The figure illustrates the following steps:

(1) The user-a driver or a tourist-issues a request to the shortest-path selection
service specifying details such as the beginning point, the destination and
the time.

(2) The shortest-path selection service issues a request to the traffic prediction
service to query the possible traffic condition in that time.

(3) The traffic prediction service subscribes to the real-time traffic flow infor-
mation service (a RTIS provided by TIG) and accesses the latest traffic flow
information for traffic forecasting [10], then return the results to the shortest
path selection service.

(4) The shortest-path selection service accesses the road information via the road
network information service (a STIS provided by TIG) and computes the
optimal path according to both the forecasting result and the road network
[11]. Then return the optimal path to the user.

5 Conclusions

In this paper, we have described our research work related to traffic informa-
tion grid, which applies Grid technologies to solving intelligent transportation
systems problems-information sharing and coordinated use. We described the
TIG’s physical elements, a service-oriented and layered architecture and two dif-
ferent implementation modes as well as their experimental results. An example
application was given to explain how the TIG works. TIG integrates data from
distributed sources with different formats together and turns it into fine-defined
information services, which hides the underlying distributed, heterogeneous and

206 G. Tan, C. Li, and J. Wu

dynamic characteristics form the information consumers. On the other hand,
TIG also provides the complex information processing with high-performance
computation abilities. Based on the practice of TIG, Grid is proved to be an
effective solution for data-intensive applications.

References

1. National police Agency, Ministry of International Trade and Industry, Ministry of
Transport, Ministry of Posts and Telecommunications, Ministry of Construction:
System Architecture for ITS in Japan (1999)

2. System Architecture Committee of ITS America: National ITS Architecture (1997)
3. I. Foster and C. Kesselman: The Grid: Blueprint for a New Computing Infrastruc-

ture, Morgan Kaufman, Pub. (1998)
4. I. Foster, C. Kesselman and S. Tueche: The Anatomy of the Grid: Enabling Scal-

able Virtual Organizations. International Journal of High Performance Computing
Applications, 15(3), 2001: 200-222

5. I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke: Grid Service for distributed
system integration. IEEE Computer, 35(6), 2002: 37-46

6. Z. W. Xu, and W. Li: Research on Vega Grid Architecture. Journal of Computer
Research and Development, 39(8), 2002: 923-929

7. C. J. Jiang, G. S. Zeng, H. Z. Chen, et al: Research on Traffic Information Grids.
Journal of Computer Research and Development, 40(12), 2003: 1677-1679

8. I. Foster, C. Kesselman, J. M. Nick and S. Tuecke: The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
http://www.globus.org/research/papers/ogsa.pdf, 2002

9. Globus Group, http://www.globus.org
10. G. Z. Tan and H. Ding: Research of generalized neural network and it’s application

to traffic flow prediction. Control and Decision, 17(s1) 2002: 777-780
11. G. Z. Tan and W. Gao: Shortest Path Algorithm in Time-Dependent Networks.

Chinese Journal of Computers, 25, 2002: 165-172

Author Index

Abawajy, Jemal H. 168
Ahmad, Hafiz Farooq 188
Ali, Arshad 188
Allan, Geoffrey 146
Alpdemir, M. Nedim 13
Altintas, Ilkay 120
Amoreira, Celine 120
Antonioletti, Mario 1
Atkinson, Malcolm 1

Baldridge, Kim K. 120
Birnbaum, Adam 120
Burki, Hamid Abbas 188

Cannataro, Mario 75
Carretero, Jesus 59
Chang, Elizabeth 86
Comin, Matteo 75

Egglestone, Stefan Rennick 99
Escolar, Soledad 59

Fernandes, Alvaro A.A. 13
Ferrari, Carlo 75
Fleming, Peter 146

Garcia, Felix 59
Garcia, Jose D. 59
Georgousopoulos, Christos 25
Gounaris, Anastasios 13
Greenhalgh, Chris 99
Grosu, Daniel 176
Guerra, Concettina 75
Guzzo, Antonella 75

Hadzic, Maja 86
Hamsphire, Alastair 99
Hanushevsky, Andrew 38

Herrera, J. 108
Herrero, Pilar 50, 158
Hong, Neil Chue 1
Huedo, E. 108
Humble, Jan 99
Hume, Alastair 1

Jackson, Mike 1

Kadirkamanathan, Visakan 146
Kant, Umesh 176
Karasavvas, Konstantinos 1
Krause, Amrey 1

Li, Chengxu 197
Li, Peter 13
Llorente, I.M. 108
Ludaescher, Bertram 120

Miladinovic, Igor 134
Miller, Mark 120
Montero, R.S. 108
Mukherjee, Arijit 13
Muller, Henk L. 99

Nazir, Fawad 188

Ong, Max 146

Palansuriya, Charaka 1
Paton, Norman W. 13
Perez, Jose M. 59
Pérez, Maŕıa S. 50, 158
Peña, José M. 50
Potier, Yohann 120

Radenkovic, Milena 134
Rana, Omer F. 25

208 Author Index

Ren, Xiaoxu 146
Robles, Vı́ctor 50, 158

Sakellariou, Rizos 13
Sánchez, Alberto 50
Stockinger, Heinz 38
Sudholt, Wibke 120
Sugden, Tom 1
Suguri, Hiroki 188

Tan, Guozhen 197
Tarar, Tallat Hussain 188
Thompson, Haydn 146

Veltri, Pierangelo 75

Watson, Paul 13
Wu, Jiankun 197

	Frontmatter
	Data-Based Applications
	Introduction to OGSA-DAI Services
	Using OGSA-DQP to Support Scientific Applications for the Grid
	Mobile Agent-Based Service Provision in Distributed Data Archives
	A Proxy Service for the xrootd Data Server
	A Flexible Two-Level I/O Architecture for Grids
	Data Driven Infrastructure and Policy Selection to Enhance Scientific Applications in Grid

	BioApplications
	Modelling a Protein Structure Comparison Application on the Grid Using PROTEUS
	Grid Services Complemented by Domain Ontology Supporting Biomedical Community

	Applications Architecture, Frameworks and Models
	A Generic Architecture for Sensor Data Integration with the Grid
	Embarrassingly Distributed and Master-Worker Paradigms on the Grid
	A Framework for the Design and Reuse of Grid Workflows
	Towards Peer-to-Peer Access Grid
	A Service Oriented Architecture for Integration of Fault Diagnostics
	GAM: A Grid Awareness Model for Grid Environments

	Accounting and Market-Based Architecture
	Grid Accounting Service Infrastructure for Service-Oriented Grid Computing Systems
	Mercatus: A Toolkit for the Simulation of Market-Based Resource Allocation Protocols in Grids

	Resource and Information Management in Grid
	A Resource Monitoring and Management Middleware Infrastructure for Semantic Resource Grid
	A Service-Oriented Framework for Traffic Information Grid

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

